3.4 Эконометрика

Этот метод позволяет группировать несколько полученных регрессионных выражений в некую модель более широких взаимосвязей. Например, необходимо узнать, сколько, по-видимому, будет весить портативный персональный компьютер в следующем году или через три года. Базовое уравнение для получения прогноза позволяет рассматривать вес компьютера в виде функции веса источника питания, диска, экрана, числа и веса дисководов. В свою очередь, вес источника питания может быть прогнозирован, по крайней мере, отчасти, в функции темпа технического прогресса натриево-серных батарей и, например, повышения температуры сверхпроводимости (стремясь к достижению сверхпроводимости при комнатной температуре). В третьем уравнении можно связать динамику параметров технического прогресса и весовые характеристики плоского экрана. В четвертом уравнении можно, например, описать скорость развития новых сверхпроводящих материалов. Необходимый прогноз относительно будущего веса портативного компьютера требует одновременного решения всех этих уравнений.

Эконометрика позволяет построить обобщенную причинно-следственную модель, использующую многие переменные и набор многофакторных регрессий.

Методы эконометрики наиболее эффективны, если 1)возможно выявление причинно-следственных связей между рассматриваемыми параметрами исследуемого объекта 2)возможно предсказать направление изменений этих “причинных” переменных. 3) можно описать факторы, влияющие на значения причинных переменных.

Построение такой модели более трудоемко и дорого, чем использование предыдущих методов, однако важным преимуществом эконометрических подходов является то, что характер выявленных взаимосвязей не меняется со временем, и полученная выверенная модель может быть использована для следующих или предыдущих по времени циклов (в пределах правомерности предсказаний изменений независимых переменных и отсутствия влияния не учитываемых параметров: например, политико-экономической ситуации).

4 Моделирование динамики объектов прогноза

Соответствующие решения основаны на кибернетических теориях и методах анализа систем, предполагающих, что большинство событий взаимосвязаны. В соответствие с этим факторы и влияющие переменные моделей динамики системы и соответствующие связи и взаимодействия рассматриваются в виде группы петель обратной связи.

Известны компьютерные модели роста мировой динамики, динамики развития производственного предприятия, социально-экономического развития страны или группы стран. Модели, полученные с использованием динамики систем, полезны для понимания характера взаимодействия различных факторов и стратегического анализа объекта прогнозирования.

Динамические закономерности могут моделироваться как аналитически, так и на качественном уровне в форме исторических аналогий, экспертных суждений и пр.

4.1 S-кривые

Анализ, получивший название S-кривых, основан на известных закономерностях, по которым технология, выводимая на рынок, имеет определенный цикл жизни, в рамках которого доля соответствующего рынка растет сначала медленно, потом быстро, а затем перестает расти и/или начинает уменьшаться.

Во многих работах показано, что эти закономерности не всегда применимы, а в тех случаях, когда применимы, их нельзя воспринимать слишком буквально. И в то же время прогнозы на основании S-кривых помогли некоторым компаниям в конкурентной борьбе, а игнорирование этих закономерностей нанесло ущерб другим.

Модель S-кривой может быть применена не только к проникновению на рынок новых продуктов, но и к скорости распространения использования новой технологии как одного из видов продуктов или к параметрам новой технологии.

На рис.2 представлено семейство кривых для отдельных технологий, характеризующих развитие средств перемещения, где скорость движения оценивается в долях от скорости света. Обобщенная кривая дает картину изменения скорости перемещения, асимптотически приближающейся со временем к скорости света. Во многих моделях прогнозирования технологий существуют такие физические или естественные ограничения, как, например, доля рынка, которая не может быть более 100%.

Ключом к эффективному прогнозированию с помощью S-кривых является наличие предыдущего опыта использования аналогичных технологий. Например, для прогнозирования развития скорости нового сверхзвукового самолета, использующего в качестве топлива метанол, полезно изучить историю первого турбинного самолета, относящуюся к 1936 году, убедиться, что первое реальное использование этого самолета относится к 1940-му году, а затем еще десять лет ушло на увеличение мощности турбины и совершенствование конструкции самолета, в течение которых постепенно увеличивалась скорость полета. Далее можно предположить, что освоение и развитие сверхзвукового самолета потребует столько же лет на коммерциализацию и последующее совершенствование.

В этом примере виден и основной недостаток метода - неопределенность в том, насколько прежняя технология сопоставима с принципиально новым претендентом на рынке.

Несмотря на редкость использования S-кривых непосредственно для целей технологического прогнозирования, полезно рассмотрение таких кривых для решений в области НИОКР и прогнозирования непредвиденных случаев.

Наиболее значимой пользой этого метода является напоминание о том, что скорости проникновения на рынок, диффузии технологий или увеличения технологических параметров не могут расти бесконечно.


Информация о работе «Прогнозирование развития технологий»
Раздел: Менеджмент
Количество знаков с пробелами: 58628
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
80889
2
0

... проблем. Вероятность того, что предсказанные события действительно наступят, зависит от качества экспертов, научной обоснованности ими оценок и допущений. Глава 2 Прогнозирование развития образования на примере Новосибирской области 2.1 Целеполагание прогнозирования развития образования Концепция инновационного развития образования Новосибирской области базируется на духовных, культурных ...

Скачать
148824
1
0

... предложений, поступающих от населения и различных местных сообществ. Люди должны сознавать, что разработка стратегии развития муниципального образования — их общее дело и они — его участники. 2. Анализ социально-экономического прогнозирования развития МО «Город Каменск-Уральский» В 2006-2008 ГГ. 2.1 Характеристика МО «Город Каменск-Уральский» Географически Каменск-Уральский расположен на ...

Скачать
32866
0
4

... учебная и научная литература таких авторов как Бобровников Т.Н., Бешелев С.Д., Гурвич Ф.Г., Кузьбожев Э.Н., Морозова Т.Г., Литвак Б.Г., Гранберг А.Г. и т.д. 1.Теоретические аспекты экономического прогнозирования развития агропромышленного комплекса 1.1.Агропромышленый комплекс, его состав и особенности. Аграрная политика Агропромышленный комплекс (АПК) является важнейшим межотраслевым комплексом ...

Скачать
181085
4
4

... значений добычи при заданных уровнях инвестирования для ДАО Пурнефтегаз. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:   1. Баранов В.Н. «Независимые производители и перспективы развития газовой отрасли России». 2. Сборник докладов и выступлений « Развитие российского рынка газа: ценообразование и перспективы биржевой торговли» 3. Язев В. «Природный газ». 4. Ермолов О.В., Миловидов К.Н., Чугунов Л.C., ...

0 комментариев


Наверх