7 Многовариантный анализ

В основу многовариантного анализа, в отличие от всех других методов прогнозирования, положена концепция, по которой в силу многих неопределенностей нельзя заранее знать то “одно” будущее, которое когда-то будет иметь место. Поэтому надо оценить вероятные альтернативные последствия различных его вариантов и быть готовым к возможным изменениям, заранее выявив различные схемы отклика на конкретное протекание событий.

Не удивительно, что многовариантный анализ в первую очередь используют компании и организации, которые часто испытывают значительные изменения окружающей среды. Например, анализ тенденций может успешно использоваться компаниями со стабильным кругом потребителей, состоянием рынка и характером ведения бизнеса, то есть когда можно говорить о статистических закономерностях в поведении потребителей и развитии рынка в целом. Однако этот метод терпит неудачу в попытках использовать его для планирования потребностей компаний, чьи потребители и цены изменчивы, а структура рынка колеблется под влиянием политики, законодательства, приватизации и т.д. (как это происходит во всем мире с нефтяными компаниями, газовой промышленностью, авиалиниями и банками). Именно в этих высоко динамичных условиях компании обращаются к многовариантному анализу, чтобы дополнить методы традиционного анализа тенденций.

Другое важное философское допущение, лежащее в основе многовариантного анализа, заключается в том, что мы сами можем оказать некоторое влияние на будущее своими действиями. И тогда вопросы анализа формулируется не только о том “Каким будет будущее?”, но и о том “Каковы вероятные последствия будущего?”, “Какое из этих последствий нам в наибольшей степени хотелось бы видеть?”, “При каких обстоятельствах именно этот результат может иметь место?” Прогноз основывается на рассмотрении альтернативных следствий, исходя из которых, разрабатывается стратегия, способная с наибольшей вероятностью привести к желаемым результатам.

На самом деле, многие из методов многовариантного анализа не являются методами прогнозирования в строгом смысле слова, по крайней мере, в глазах статистиков и эконометриков. И все-таки эти методы с успехом применяются для целей стратегического планирования и технологического прогнозирования, потому что на практике многие компании имеют значительное влияние на собственное будущее.

Подобно экспертным оценкам, многовариантный анализ используется не только для принятия технологических. Для формального прогнозирования технологий методы многовариантного анализа не очень эффективны, однако они дают отличные результаты для установления связей технологий с “нетехническими” факторами и соответствующие инструменты являются, по-видимому, наилучшими для макроскопического “прогнозирования продуктов”.

Метод сценариев. Возникновение метода применительно к стратегическому планированию относится к 60-м годам и Военно-воздушным силам США, искавшим в то время новые доктрины к ведению возможной войны с СССР, а первое его применение в промышленных целях реализовала General Electric.

Сами способы получения вариантов сценария различны, однако содержат общие черты, предлагая:

Подробное документирование анализа тенденций и выявление предполагаемых событий, которые должны иметь место к предполагаемому сроку (по возможности, с оценкой их вероятности или хотя бы с ранжированием в порядке иерархии вероятностей)

Выявление альтернативных групп наиболее важных факторов

Группы совместимых результатов, так что значимо различные сценарии внутренне объединены между собой

Видение будущего (будущих), которое создает основу для планирования и принятия соответствующих решений в условиях различных случайностей.

Как и другие методы прогнозирования, метод сценариев хорошо годится для одних типов применений и непригоден для других. Его наибольшая эффективность наблюдается, если к методу прогнозирования предъявляются следующие требования:

В прогнозе учитываются только макроскопические факторы, находящиеся за пределами количественных переменных и установленных связей между ними (например, необходимо учесть возможные изменения политики и экономики). Метод сценариев позволяет объединять социально-политические, экономические и технологические факторы, хотя и не дает таких точных микроответов, как статистические модели и эконометрика.

Прогноз осуществляется в длительных временных рамках. Как было показано выше, многие из методов анализа тенденций не позволяют прогнозировать будущее более чем на один-три года, и тем более неадекватны при рассмотрении десятилетних отрезков, особенно в условиях нестабильности. Сценарии же представляют собой общие оценки будущих событий и хорошо пригодны для условий неопределенности.

Возможно “статическое” описание будущей среды. Как инструмент планирования, сценарии представляют собой некий перечень отдельных событий к определенному этапу или времени. Как инструмент прогнозирования, сценарии не показывают истинную последовательность ни в смысле точных этапов, ни отрезков времени. Сценарии применяются, чтобы охватить планируемый период, не пытаясь вычленить истинную последовательность событий за точные отрезки времени.

Для объекта прогнозирования характерна высокая степень неопределенности. Сценарии не игнорируют неопределенность, но позволяют вычленить различные альтернативные следствия и вероятности тех или иных событий. “Быть предупрежденным значит быть вооруженным”, подготовленным к конкретным обстоятельствам (неготовность к победе иногда может влечь за собой не меньше потерь, чем неготовность к проигрышу).

На будущее развитие прогнозируемой системы существенное влияние оказывают факторы, не выражаемые количественно. Количественные методы прогнозирования игнорируют факторы, которые не могут быть выражены в количественной форме. Метод сценариев учитывает также и качественные факторы (изменение военных доктрин, экологического законодательства, влияние общественных сил).

Симуляции. Симуляции (моделирование) можно назвать искусной игрой, предпринимаемой, однако не для развлечения, а в целях лучшего понимания и опробования вариантов поведения. Популярные шахматы и нарды тоже создавались как некая симуляция военных действий.

Все виды “симуляций” имеют два общих элемента. Во-первых, в основе лежит некая модель прошлого, настоящего или будущего, простая или сложная, выраженная картинками, фигурами, правилами или аналитическими соотношениями. Характерной особенностью таких моделей является обязательное отражение связи прошлого и будущего. То есть решения, принятые сегодня и в предыдущие моменты времени предопределяют состояние системы в будущем. Второй элемент - игра в виде неких структурированных действий, с помощью которых выявляется влияние изменений входных условий на конечный результат. В целом, симуляция представляет собой безопасное аналитическое обучение и получение некоторого опыта испытаний вариантов, которые невозможны в реальности, когда как правильный, так и ошибочный ход могут привести к непоправимым последствиям.

Симуляцию в виде проверки моделей, созданных с использованием других методов прогнозирования, чаще используют при обучении, чем в реальных условиях принятия решений.

Достоинства метода симуляций включают следующие:

Ставя перед участниками серьезные интеллектуальные проблемы, симуляции содействуют межличностным контактам и сотрудничеству с получением в результате общего опыта

Подобно лабораторным экспериментам, симуляции предоставляют средства обширных исследований влияния большого диапазона измеряемых параметров без реального риска, с которым эти изменения могли бы быть связаны на практике.

Одновременно надо отметить серьезные недостатки, которые ограничивают использование этого метода на уровне руководства корпораций:

Используемые при симуляциях базовые модели часто не очень точны и представляют собой большие упрощения, что может привести к ошибкам в самой симуляции и соответственно в принимаемых решениях.

Построение базовых моделей требует значительных ресурсов, особенно при построении “реалистических” моделей. Чем более реалистична модель, тем более она сложна и тем меньше руководство склонно к ее использованию: никто не любит использовать трудные методы принятия решения.

Повышение мощности компьютеров должно повысить как точность базовых моделей, так и снизить трудоемкость их построения.

Построение дерева (маршрутизация). Этот метод возник в 70-х, и с тех пор почти каждая компания в той или иной степени использовала этот качественный подход, чтобы структурировать свое понимание стратегии и будущего. Хотя в настоящее время применение этого метода для принятия главных решений ограничено, некоторые важные достоинства построения маршрутов делают его привлекательным иллюстративным инструментом. Например,

Выявленное дерево (маршруты) является превосходным инструментом структурирования проблем, особенно при планировании, когда сформулирована общая цель, и нужно выявить последовательность и варианты определенных шагов ее достижения. Узлы дерева, или развилки пути, могут представлять собой варианты “и” или “или”: в одном узле необходимо выполнять оба шага одновременно, а в другом надо выбрать один из альтернативных путей.

Метод представляет средство визуализации плана и решения задач по многим его этапам вплоть до завершения.

При определенной искусности и квалификации аналитика соответствующие карты могут быть построены достаточно легко и быстро, без необходимости иметь слишком много данных и использования сложных методов.

Построение дерева редко является инструментом прогнозирования, оказываясь более эффективным на тактических стадиях воплощения технологии, чем при стратегическом планировании, однако с его помощью можно решать такие общие задачи, как прогнозирование вероятности конкретной технологии (например, изготовления чипов нового поколения) к какому-то году. Соответствующие узлы объединяют ветви отдельных технологических разработок в области необходимых материалов, в то время как другие узлы отражают необходимые разработки в области монтажа или тестирования. Для получения общего вывода используют экспертные оценки вероятности по каждому из направлений, при этом дерево дает интегральную картину и позволяет получить итоговый результат.

Возможно применение этого метода и для обратной задачи: если известен желательный гипотетический параметр технологии, аналитик может построить дерево этапов достижения желаемого результата в параметрах необходимого времени, затрат и вероятности успеха.

Анализ портфеля. Этот метод относится к методам анализа финансовых рисков, сопровождающих планирование технологий, и будет более подробно рассмотрен в курсе “Управление рисками”. Строго говоря, он не является методом технологического прогнозирования, потому что не содержит оценок будущих разработок или параметров технологии. Однако это важный инструмент планирования, с помощью которого оценивают риск бизнеса (соотношение инвестиций и возможной отдачи) новых разработок технологий и/или продуктов.

Основным преимуществом анализа портфеля является визуализация категорий риска, который представляет собой данная технология в качестве ресурса корпорации. Высшее руководство любит визуализацию идей вообще, а данный метод особенно близок руководству с финансовым образованием.

Анализ портфеля наглядно иллюстрирует финансовые ожидания, связанные с конкретными технологиями, но не может предсказать достижимые технологические параметры или возможное время завершения разработок.

Квалифицируя отдельные разработки в “портфеле” организации по уровню ожидаемой финансовой отдачи или риска, определяемого новизной продукта или целевых рынков, анализ портфеля является разумной основой выбора комбинации проектов, соответствующих балансу возможных рисков (см. рис.3, 4).

Технологическое прогнозирование занимает все большее место в стратегии управления технологическим развитием компаний.

Для задач разработки технологической стратегии представляется особенно полезной следующая последовательность использования некоторых из многочисленных методов прогнозирования:

Экспертные оценки (интервью и обзоры) с целью уточнения вопросов последующего исследования

Экспертные оценки (генерация идей и техника номинальных групп), с целью выявления критических факторов, тенденций, переменных, которые надо включить в охват разрабатываемого прогноза

Анализ тенденций (экстраполяция тенденций, сериальные оценки, анализ патентных тенденций) для лучшего понимания прошлого и настоящего конкретных технологий и наиболее вероятного будущего - для каждого фактора, являющегося предметом прогнозирования

Многовариантный анализ (разработка сценариев и симуляции), с целью объединения выявленных тенденций и создания возможных альтернатив взгляда на будущее

Экспертные оценки (и, в первую очередь, генерация идей и метод номинальных групп) - на этот раз с целью получения общей картины и возможных стратегических вариантов развития бизнеса, исходя из результатов прогноза

Анализ тенденций (в частности, экстраполяция тенденций и сериальные оценки) в сочетании с другими методами прогнозирования (например, эконометрики и финансовых проекций) для детального “микроскопического” анализа для разработки конкретных планов.

Список литературы

J. P. Martino, Technology Forecasting for Decision Making, 2nd.ed. New York, North-Holland, 1983

W. Ascher, Forecasting. An Appraisal for Policy-Makers and Planners, Baltimora, The Johns Hopkins University Press, 1978

S.M. Milett and E.J. Honton, A Manager’s Guide to Technology Forecasting and Strategy Analysis Methods, Battelle Press,1991

Технологическая фирма: менеджмент и маркетинг. Сборник статей под ред. Н.М. Фонштейн, Серия “Библиотека технологического предпринимательства”, “ЗелО”, 1997, 352 с.

D. Meadows, Charting the Way the World Works, Technology Review, 8, (February-March 1985), pp.55-63

Э.П. Скорняков, Информационные технологии для продвижения интеллектуальной собственности на рынок, в сб. Коммерциализация интеллектуальной собственности: проблемы и решения. Сост. и общ. ред. Н.М. Фонштейн и В.Г. Зинов, М., “ЗелО”, 1996, 207 с.

Для подготовки данной работы были использованы материалы с сайта http://www.intb.ru


[1] Milett - Hansen - Managing Guide


Информация о работе «Прогнозирование развития технологий»
Раздел: Менеджмент
Количество знаков с пробелами: 58628
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
80889
2
0

... проблем. Вероятность того, что предсказанные события действительно наступят, зависит от качества экспертов, научной обоснованности ими оценок и допущений. Глава 2 Прогнозирование развития образования на примере Новосибирской области 2.1 Целеполагание прогнозирования развития образования Концепция инновационного развития образования Новосибирской области базируется на духовных, культурных ...

Скачать
148824
1
0

... предложений, поступающих от населения и различных местных сообществ. Люди должны сознавать, что разработка стратегии развития муниципального образования — их общее дело и они — его участники. 2. Анализ социально-экономического прогнозирования развития МО «Город Каменск-Уральский» В 2006-2008 ГГ. 2.1 Характеристика МО «Город Каменск-Уральский» Географически Каменск-Уральский расположен на ...

Скачать
32866
0
4

... учебная и научная литература таких авторов как Бобровников Т.Н., Бешелев С.Д., Гурвич Ф.Г., Кузьбожев Э.Н., Морозова Т.Г., Литвак Б.Г., Гранберг А.Г. и т.д. 1.Теоретические аспекты экономического прогнозирования развития агропромышленного комплекса 1.1.Агропромышленый комплекс, его состав и особенности. Аграрная политика Агропромышленный комплекс (АПК) является важнейшим межотраслевым комплексом ...

Скачать
181085
4
4

... значений добычи при заданных уровнях инвестирования для ДАО Пурнефтегаз. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ:   1. Баранов В.Н. «Независимые производители и перспективы развития газовой отрасли России». 2. Сборник докладов и выступлений « Развитие российского рынка газа: ценообразование и перспективы биржевой торговли» 3. Язев В. «Природный газ». 4. Ермолов О.В., Миловидов К.Н., Чугунов Л.C., ...

0 комментариев


Наверх