1. Педагогический процесс математического образования студента-физика определяется представлением о нем как о научно управляемом процессе,
имеющем целью достижение высокого уровня математической готовности выпускников педвузов к выполнению функций обучения, воспитания и развития обучаемых средствами математики,
связанном с реализацией общедидактических принципов: научности, доступности, гуманизации, дифференциации и т.д.,
организуемом с учетом современного состояния школьного образования: Федерального государственного стандарта полной (средней) школы, разнообразия форм средних учебных заведений, вариативности учебных программ и учебников, разработки новых педагогический технологий,
определяемом рядом системообразующих факторов: фундирования как процесса физической и углубления математической подготовки на основе базового школьного компонента, реализации технологии наглядно-модельного обучения математике, профессионально-педагогической направленности математического образования.
2. Эффективная организация учебно-методической деятельности студентов-физиков требует реализации для математической деятельности следующих структурообразующих принципов: фундирования, целостности, профессионально-педагогической направленности, наглядно-модельного обучения, оптимальности, развивающего обучения.
Реализация рассмотренных принципов в педагогической системе математического образования должна осуществляться в следующих компонентах содержания образования:
учебный план Предметного блока Государственного образовательного стандарта;
учебные программы (образовательные профессиональные программы) математических дисциплин;
теоретический и практический материал учебных дисциплин, отражающий содержание учебных программ;
методологическое и методическое обеспечение преподавания математики.
Данная типология согласуется с подходом к разработке теоретических основ содержания образования В.В.Краевского и И.Я.Лернера, которые различают три уровня проектируемого содержания: общетеоретический уровень (учебный план), уровень учебного предмета (программа) и уровень учебного материала (учебное пособие).
3. Педагогическая система математического образования учителя физики представляет собой целостный объект, имеющий следующие характеристики:
компоненты системы,
структура внутренних и внешних взаимосвязей,
функциональность,
интегративность,
обобщенность.
Анализ теоретических работ и реальная практика педагогической деятельности позволяют представить следующие основные компоненты педагогической системы:
мотивы,
целеполагание,
модели содержания и структуры математического образования,
средства, формы, условия,
результаты,
мониторинг функционирования системы.
Педагогическая система математического образования является важнейшей частью системы более высокого уровня профессиональной подготовки учителей физики - и функционирует в ее составе.
Целеполагающим компонентом системы математического образования будет выступать профессиограмма учителя физики, служащая ориентиром готовности будущего учителя физики к профессиональной деятельности.
4. В процессе обучения математике происходит развитие и трансформация мотивационной сферы студентов педвузов. Как указывает В.Д.Шадриков, "это развитие идет в двух направлениях: во-первых, общие мотивы личности трансформируются в трудовые; во-вторых, с изменением уровня профессионализации изменяется и система профессиональных мотивов" [4].
Поэтому предлагаются следующие принципы отбора содержания математической подготовки учителя физики в педвузе:
Социально-культурная и гуманитарная составляющая
Эта линия отражает сферу формирования элементов математического мышления студента-физика, математических навыков социокультурного уровня, внедрения активных методов обучения (наглядность, деловые игры, поисковые и т.п.), стимулирующих интерес к профессии и предмету обучения.
Прикладная составляющая
Содержание математического образования физика должно соответствовать потребности физических знаний в проявлении их сущности, необходима возможность конкретизации математических понятий на физических примерах, мотивация введения математических понятий рассмотрением реальных физических процессов.
Фундаментальная составляющая
Уровень математического образования должен удовлетворять объективной потребности, преемственности школьных и вузовских знаний, логической завершенности формируемых математических знаний, устойчивости и прочности формирования умений и навыков оперирования с математическими объектами.
Становление творческой активности
Математическое образование дает реальную возможность усилить влияние поисковых и эвристических методов обучения математике на формирование и становление творческой активности студентов-физиков.
Принцип наглядно-модельного обучения. Такому подходу к построению математического образования чужды формализм, начетничество, игнорирование или недостаточное внимание к субъекту восприятия сущности математики. Со времен великих педагогов (Я.А. Коменский, Т. Песталоцци, К.Д. Ушинский и др.) педагогическая мысль стремилась к такой организации учебного процесса, при которой достигается сознательное понимание смысла (сути) и содержания математических понятий. Один из таких путей - сделать процесс обучения математике наглядным, так как именно наглядное обучение позволяет учителю овладеть активными методами обучения и воспитания, способствует обеспечению принципов научности и доступности изложения материала, улучшению общекультурной подготовки учащихся, позволяет обеспечить разностороннее и полное формирование понятий, поддерживать интерес учащихся к предмету, к учебе, приводит к более высокому уровню развития математической культуры, в том числе математического языка и логического мышления, эстетического восприятия, творческого отношения к делу.
Основной задачей повышения эффективности применения наглядного метода обучения математике является отыскание и применение на практике активных методов формирования и организации учебной познавательной деятельности. Для решения поставленной проблемы следует выделить основные характерные черты изучаемого объекта, исходя из которых и дать определение наглядного обучения математике, указать средства его реализации в процессе учебной деятельности.
Наглядное обучение - это определенный вид деятельности как учителя, так и ученика [5]. Действие должно быть адекватно знанию, которое усваивается, при этом активная мыслительная деятельность обучаемых значительно обогащает процесс восприятия учебного материала. Таким образом, внешние действия учителя и внутренние действия обучаемых по выявлению содержания и формированию представлений являются неотъемлемыми элементами структуры наглядного обучения.
Следующий компонент концепции наглядного обучения - модельность, построение модели и ее усвоение. Наглядное обучение - это процесс создания "хорошо усваиваемых моделей" с опорой на нейро-физиологические и психологические механизмы восприятия. Моделирование является одним из составных компонентов наглядного обучения.
В процессе обучения мы формулируем модель существенных признаков объекта изучения, адекватных поставленной цели. Таким образом, наглядное обучение есть процесс, включающий в себя как построение модели, так и формирование адекватного результата внутренних действий обучаемых в процессе учебной деятельности. Предпочтение отдается "наглядной модели" в смысле опоры на устойчивые ассоциации, простые геометрические формы, психологические законы восприятия и нейро-физиологические механизмы памяти. Модель должна отражать суть понятия, формы или метода исследования.
В процессе формирования математических представлений о физических процессах приемами наглядного обучения существенную роль играет специфика математических знаний, умений, навыков и методов. Математика оперирует объектами, уже представляющими абстрагирование от действительного мира и, как правило, обобщающими разнообразные реальные и идеальные ситуации: интеграл как обобщение и абстрагирование понятий площади, длины, объема, но в то же время абсолютно непрерывная функция; производная как обобщение и абстрагирование понятий касательной, скорости, плотности, но в то же время переменная площадь, заключенная под непрерывной кривой. Эти идеальные объекты являются основными для формирования других абстракций: свертка функций, обобщенная производная - распределение, мера, преобразование Лапласа и т.д. Поэтому опоры для внутренних действий обучаемых в процессе наглядного обучения математике следует искать не только во внешних действиях учителя, но и среди остаточных фреймов - следов предыдущих знаний в памяти обучаемых.
В процессе выделения основных компонентов наглядного обучения мы пришли к следующему выводу: в процессе обучения математике студентов-физиков важно предварительно провести подготовку обучаемого к восприятию, четко поставить цель, затем не только предъявить объект изучения, но и организовать деятельность обучаемого при работе с объектом адекватно модели организованного набора математических знаний.
Применение наглядно-модельных методов обучения математике для студентов-физиков может выражаться как в специфических критериях отбора математического содержания, так и в технических единицах дидактического материала.
Принцип фундирования. Структурообразующим фактором проектируемых дидактических систем математического образования студентов-физиков в педвузе может являться концепция фундирования, предложенная академиком В.Д. Шадриковым. Фундирование школьных учебных элементов - это процесс создания условий (психологических, педагогических, организационно-методических) для актуализации базовых учебных элементов школьной и вузовской математики, адекватных физическому содержанию, с последующим теоретическим обобщением структурных единиц, раскрывающим их сущность, целостность и физическую обусловленность в направлении профессионализации знаний и формирования личности педагога. Принципиальным отличием формулируемой концепции фундирования является определение профессионально - ориентированной теоретической основы для спиралевидной схемы развертывания и моделирования базовых учебных элементов математики в направлении теоретического обобщения в системе математической подготовки студентов-физиков.
Принципы и критерии отбора учебного материала были обсуждены выше, приведем примеры технологических единиц в форме структурно-логических спиралей. Схема построения таких спиралей фундирования математического знания (умения, навыка, метода) дана на следующем рисунке.
При этом желательно для n-ой абстракции основного математического знания (умения, навыка, метода) указывать и обсуждать не менее 2-х физических приложений (дидактически физические приложения могут предшествовать появлению n-ой абстракции, выполняя функции мотивационного блока). Более конкретно для основного понятия числа имеем структурно-логическую спираль:
Выводы: математическое образование будущего учителя физики будет оптимальным, если:
Ввести раздельные математические дисциплины: математический анализ, геометрию, алгебру, теорию вероятностей и математическую статистику;
Ввести следующие дисциплины: вариационное исчисление (либо как часть математического анализа); теорию функций комплексного переменного, ряды Фурье (как часть математического анализа); теорию групп и тензорное исчисление (как часть алгебры); элементы функционального анализа (конкретизация разделов);
Определены общие и специальные принципы, определяющие направления развития системы математического образования физика в педвузе. К общим принципам относятся: принцип личностной ориентации, принцип профессионально-педагогической направленности, принцип целостности, принцип вариативности, принцип моделирования и принцип методологической определенности. К специальным принципам относятся принцип наглядного моделирования, принцип покрытия, принцип фундирования, принцип развивающего обучения.
Определена модель методической системы математического образования будущих учителей физики в единстве методологического, теоретического и общекультурного компонентов;
Дано теоретическое обоснование сущности математического образования будущего учителя физики как целостного процесса становления личности учителя, включающей систему математических знаний, систему общих интеллектуальных и практических умений и навыков, опыт творческой деятельности, опыт эмоционально-волевой деятельности;
Дана модель содержания математического образования будущих учителей физики, включающая общетеоретический уровень (учебный план), уровень учебного предмета (программы), уровень учебного материала (учебники, монографии, пособия, методические указания и т.п.), опыт творческой и эмоционально-волевой деятельности.
Конкретная проработка математического содержания подготовки учителя физики должна осуществляться вузами при содействии и контроле научно-методических советов России по физике и математике.
Список литературы
Джеффрис Г., Сквайрс Б. Методы математической физики. М.: Мир, 1970. 350 с.
Рид Е., Саймон Б. Методы современной математической физики. Функциональный анализ. М.: Мир, 1977. 354 с.
Афанасьев В.В. Формирование творческой активности студентов в процессе решения математических задач. Ярославль, 1996. 168 с.
Афанасьев В.В., Поваренков Ю.П., Смирнов Е.И., Шадриков В.Д. Подготовка учителя математики: Инновационные подходы. Учебное пособие. М.: Гардарики, 2001. 383 с.
Смирнов Е.И. Технология наглядно-модельного обучения математике. Ярославль, 1997. 283 c.
Анохин П.К. Философский смысл проблемы интеллекта // Вопросы философии. 1973. № 6.
Леонтьев А.Н. Деятельность, сознание, личность. М., 1975.
Арнольд В.И. "Жесткие" и "мягкие" математические модели. М.: МЦНМО, 2000.
Для подготовки данной работы были использованы материалы с сайта http://www.yspu.yar.ru
... времени, пространстве и массе является гносеологическим, основополагающим и, следовательно, философским фундаментом физики. 2. Методологические мировоззренческие принципы построения последовательности педагогических действий при обучении физике в контексте мировой культуры 2.1 Физика в контексте мировой культуры Если мы серьезно намерены формировать гармоническую развитую личность, то в ...
... уже после окончания ими школы, это поможет им в дальнейшем при получении профессии и при совершенствовании их профессиональных знаний и умений. 1.2 Психолого-педагогические проблемы формирования целостного миропонимания В Концепции модернизации российского образования на период до 2010 года как основные можно выделить следующие параметры качества образования: 1) научность, 2) ...
... -педагогическая или научно-техническая проблема, являющаяся новым научным вкладом в теорию определенной области знаний (педагогику, технику и другие). 4. ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ВЫПОЛНЕНИЯ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ БАКАЛАВРА ФИЗИКО-МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ ПРОФИЛЬ ИНФОРМАТИКА 4.1. Положение о выпускной квалификационной работе бакалавра физико-математического образования: ...
... педагогического исследования конкретно, в их реальном протекании, динамике. Усиленное и вполне оправданное внимание к психологии также может привести к недоразумениям в сфере исследований в области образования. Инновации последних лет были направлены на преодоление жесткого манипулирования сознанием воспитанников, отход от практики индоктринации школьников, к "очеловечению" воспитания, усилению ...
0 комментариев