3.4 Условие на оси симметрии

(9)

Задача, сформулированная в выражениях (1-9) есть краевая задача, которая решается численным методом.

Аппроксимировав на сетке методом конечных разностей (МКР), получим дискретное сеточное решение.

Ti=f(xi;tk).

Метод расчета

Будем использовать МКР – метод конечных разностей.

Сформулированную краевую задачу дискретизируем на сетке.

= - шаг по пространству постоянный; - шаг по времени переменный

Для аппроксимации задачи на выбранной сетке можно использовать разные методы – шаблоны. Наиболее известные из них для данного типа задач четырех точечный конечно разностный шаблон явный и неявный.

Явный четырех точечный шаблон Неявный четырех точечный шаблон


Использование явного шаблона для каждого временного шага получаем n+1 уравнение с n неизвестными и система решается методом Гауса, но сходимость решения только при очень малых шагах.

Использование неявного шаблона обеспечивает абсолютную сходимость, но каждое из уравнений имеет 3 неизвестных, обычным методом их решить невозможно.

По явному:

(10)

По неявному:

(11)

Сходимость обеспечивается при:

при явном шаблоне (12)

-точность аппроксимации

(13)

Схема апроксимации

Аппроксимируем задачу 1-9 на четырех точечном неявном шаблоне

Начальные условия:

(14)

(15)

(16)

(17)

(18)

Граничные условия:

(19)

(20)

(21 a)

=> (21)

Условие идеального контакта на границе отливка форма

(22)

Расчет временного шага :

Величина -var рассчитывается из условия, что за промежуток времени  фронт перейдет из точки nf в точку nf+1

Расчет ведут итерационными (пошаговыми) методами

Строим процедуру расчета следующим образом:

Вычисляем нулевое приближенное для каждого шага,

За шаг итерации примем S,

Нулевое приближение S=0.

(23)

Уточняем шаг: S+1

(24)

d – параметр итерации от 0 до 1

для расчета возьмем d=0.

Число S итераций определяется заданной точностью:

Временного шага (25)

И по температуре (26)

et и eT – заданные точности по времени и температуре

et=0,01c, eT=0,1°C

DtI=0,01c – время за которое образовалась корочка.

Описанный итерационный процесс называют ''Ловлей фазового фронта в узел''.

Можно задать Dх, DtK=const, тогда неизвестно будет положение фронта, при помощи линейной интерполяции.

Расчет температурных полей:

Метод «прогонки»:

Считается наиболее эффективным для неявно заданных конечно-разностных задач.

Суть метода:

Запишем в общем виде неявно заданное конечноразностное уравнение второго порядка (14) в общем виде:

AiTi-1 – BiTi + CiTi+1 + Di = 0 ; i = 2, 3, 4, …n-1 (27)

действительно для всех j и k.

и краевые условия для него:

T1 = p2T2 + q2 (28 а)

Tn = pnTm-1 + qn (28 б)

Ti = f(Ai; Xi; tk) - сеточное решение.

Ai, Bi, Ci, Di – известные коэффициенты, определенные их условий однозначности и дискретизации задачи.

Решение уравнения (27) – ищем в том же виде, в котором задано краевое условие (28 а)

Ti = аi+1Ti+1 + bi+1 ; i = 2, 3, 4, …n-1(29)

Ai+1, bi+1 – пока не определенные «прогоночные» коэффициенты (или коэффициенты разностной факторизации)

Запишем уравнение (29) с шагом назад:

Ti-1 = аiTi + bi (30)

Подставим уравнение (30) в уравнение (27):

Ai(aiTi + bi) – BiTi + CiTi+1 + Di = 0

Решение нужно получить в виде (29):

(31)

Найдем метод расчета прогоночных коэффициентов.

Сравним уравнение (29) и (31):

(32)

(33)

(32),(33)– рекуррентные прогоночные отношения позволяющие вычислить прогоночные коэффициенты точке (i+1) если известны их значения в точке i.

Процедура определения коэффициентов аi+1 и bi+1 называется прямой прогонкой или прогонкой вперед.

Зная коэффициенты конечных точек и температуру в конечной точке Тi+1 можно вычислить все Тi.

Процедура расчета температур называется обратной прогонкой. То есть, чтобы вычислить все Т поля для любого tk нужно вычислить процедуры прямой и обратной прогонки.

Чтобы определить начальные а2и b2, сравним уравнение (29) и уравнение (28 а):

a2 = p2; b2 = q2

Запишем уравнение 29 с шагом назад:

Tn = pnTn-1 + qn

Tn-1 = qnTn + bn

(34)

Новая задача определить pn , qn

Вывод расчетных формул:

Преобразуем конечноразностное уравнение (14) в виде (27)

, j=1,2 (35)

относиться к моменту времени k

Из (35) => Ai=Ci= Bi=2Ai+ Di= (36)

Определим значения коэффициентов для граничных условий:

на границе раздела отливка-форма

(37)

приведем это выражение к виду (28 а)

 отсюда (38)

b2=q2= a2=p2=1 (39)

на границе раздела Meтв - Меж

из (29), Tnf=Tn=> anf+1=0, bnf+1=Ts (40)

условие на оси симметрии

Tn-1=Tnв соответствии с (21)

pn=1, qn=0 (41)

подставив (41) в (34) получим

(42)

Алгоритм расчета

1)   Определить теплофизические характеристики сред, участвующих в тепловом взаимодействии λ1, λ2, ρ1, ρ2, L, а1, а2, Тs, Тн, Тф.

2)   Определить размеры отливки, параметры дискретизации и точность расчета

2l0=30 мм, l0=R=15 мм=0,015 м

n=100,

первый шаг по времени: Δt1=0,01 с, t=t+Δt

еt=0,01 с, et=0,1 оC

3)   Принять, что на первом временном шаге к=1, t1=Δt1, nf=1, Т13, Тiн, , i=2,…,n, Т4ф

4)   Величина плотности теплового потока на границе раздела отливка – форма

(43)

, s=0, (нулевое приближение)

к=2, (44)

5)   Найти нулевое приближение Δtк, 0 на к-том шаге

переход nf → i → i+1 по формуле (23)

6)   Найти коэффициенты Ai, Сi, Вi, Di по соответствующим формулам для сред Метв. и Меж. В нулевом приближении при s=0

7)   Рассчитать прогоночные коэффициенты ai+1, bi+1 для Метв. и Меж., s=0 с учетом что Тnfз.

Т12Т2+g2

Тi2Т22

Найти а2 и в2:

а2=1, (45)

(46)

8)   Рассчитать температуру на оси симметрии

(47)

9)   Рассчитать температурное поле жидкого и твердого металла

(48)

10)    Пересчитать значения ∆tк по итерационному процессу (24)

d – параметр итерации (d=0…1)

проверяем точность;

11)    Скорость охлаждения в каждом узле i рассчитать по формуле:

, оС/с (50)

12)    Скорость затвердевания на каждом временном шаге:

, м/с (51)

13)    Средняя скорость охлаждения на оси отливки:

14)    Положение фронта затвердевания по отношению к поверхности отливки

, к – шаг по времени (52)

15)    Полное время затвердевания

, к′ - последний шаг (53)

16)    Средняя скорость затвердевания отливки

(54)

Идентификаторы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Блок-схема

- [Вводим исходные данные

- [Вычисляем шаг по пространству

- [Вычисляем коэффициенты Аj, Сj для подстановки в (32), (33) и задаем температуру в первой точке

- [Температурное поле для первого шага по времени

- [Делаем шаг по времени

- [Вычисляем плотность теплового потока

- [Шаг по времени в нулевом приближении

- [Начальные прогоночные коэффициенты

- [Шаг по итерации

- [Вычисляем коэффициенты Bj для подстановки в (32), (33)

- [Вычисляем прогоночные коэффициенты по твердому металлу

- [Прогоночные коэффициенты для фронта

- [Вычисляем прогоночные коэффициенты по жидкому металлу

- [Температура на оси симметрии

- [Расчет температурного поля

- [Ищем максимальный температурный шаг

- [Уточняем Dt

- [Точность временного шага

- [Проверка точности

- [Расчет времени

- [Скорость охлаждения в каждом узле

- [Скорость затвердевания и положение фронта

- [Вывод результатов

- [Проверка достижения фронтом центра отливки

- [Расчет полного времени, ср. скорости затвердевания ср. скорости охлаждения на оси отливки

Вывод результатов

- [Конец.

Программа

CLEAR , , 2000

DIM T(1000), T1(1000), AP(1000), BP(1000), Vox(1000), N$(50)

2 CLS

N = 100: KV = 50: N9 = 5: L = .015

TM = 293: TI = 1345: TS = 1312.5

BM = 1300: a1 = .000036: a2 = .000021

TA0 = .01: ETA = .01: E = .01

l1 = 195: l2 = 101

R0 = 8600: LS = 221000

AF = 0: Pi = 3.14159265359#


Информация о работе «Расчет затвердевания плоской отливки»
Раздел: Металлургия
Количество знаков с пробелами: 25996
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
29495
5
8

... раковин и пористости) определяется на технологических пробах – небольших отливках, имеющих форму усеченного конуса или шара. Конфигурация и размеры проб ГОСТом не регламентируются. Линейная усадка цветных металлов и сплавов определяется согласно ГОСТ 16817 – 71 путем отливки пробы в сухую песчаную или металлическую (полукокильную) форму. Проба представляет собой призматический образец сечением 25 ...

Скачать
33300
6
12

... заданного качества при минимальных затратах. 1.4 Выбор положения отливки в форме и назначение разъема модели и формы Разработка литейной технологии начинается с выбора положения отливки в форме, при котором после заливки форм происходят процессы кристаллизации металлов, обеспечивающие получение плотной и однородной отливки. Выбор правильного расположения отливки в форме имеет принципиальное ...

Скачать
125123
23
0

... состава для определенных видов литья, и они не выходят за пределы этого предприятия. Основным недостатком этого метода является усложнение технологии 3.9. Изготовление форм из высокоогнеупорных и химически инертных формовочных материалов для сокращения пригара. В литейном производстве при изготовлении разовых форм большое распространение получили песчано-глинистые смеси. Объясняется это ...

Скачать
66314
7
0

... требуемых производственных площадей, расходов на оборудование, очистные сооружения, уве­личить съем отливок с 1 м площади цеха. 2. Повышение качества отливки, обусловленное использова­нием металлической формы, повышение стабильности показателей качества: механических свойств, структуры, плотности, шерохова­тости, точности размеров отливок. 3. Устранение или уменьшение объема- ...

0 комментариев


Наверх