3. Множество рациональных чисел. Система действительных чисел

Во множестве целых чисел выполняются операции сложения, вычитания и умножения, но не всегда выполняется операция деления. Расширяя множество Z так, чтобы эта операция была выполнима, получаем новое числовое множество - множество рациональных чисел Q, т.е. Q={r | r=, m, n Î Z, n¹0}. Множество рациональных чисел можно еще определить как множество бесконечных периодических десятичных дробей.

Десятичная дробь  называется периодической, если начиная с некоторого k одна или несколько цифр (группа цифр) повторяются.

Если же число нельзя представить в виде отношения двух целых чисел, то его называют иррациональным числом.

К необходимости введения понятия иррационального числа приводит рассмотрение многих задач, в частности - задачи измерения некоторых отрезков (например, длины диагонали квадрата со стороной, равной единице). Иррациональное число представляется непериодической бесконечной десятичной дробью. Например, рациональные числа  и  представляются следующими десятичными дробями:  = 0,75;  = 0,333 ... = 0,(3).

Иррациональные числа  и p представляются непериодическими бесконечными дробями:  = 1,414...; p = 3,14159....

Непериодическими бесконечными дробями также являются:

0,101001000100001...,  и другие.

Множество, состоящее из всех рациональных и всех иррациональных чисел, называется множеством действительных чисел R. Геометрически действительные числа изображаются точками числовой прямой. Отметим, что между множеством действительных чисел и множеством точек числовой прямой установлено взаимно однозначное соответствие.

Имеется в виду что каждой точке на прямой соответствует число из множества R, и наоборот, каждому числу из множества R соответствует точка на прямой.

4. Система комплексных чисел

Однако действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение с действительными коэффициентами. Например, уравнение вида х2 + 1= 0 действительных корней не имеет. А это означает, что система действительных чисел нуждается в расширении.

О п р е д е л е н и е. Множество чисел вида а + bi, а, b Î R, i2 = -1, называется системой комплексных чисел С.

Подчеркнем, что в отличие от множества действительных чисел (R), множество комплексных чисел (С) с операциями определенными на нем не обладает свойством упорядоченности, так как имеется элемент , в частности, нельзя определить понятие быть положительным.

а - действительная часть комплексного числа, bi - мнимая часть комплексного числа, i =  - мнимая единица, b - коэффициент при мнимой единице. Запись числа в виде z = а + bi называется алгебраической. Комплексное число z = а + bi равно нулю тогда и только тогда, когда а = 0 и b = 0. Два комплексных числа z1 = а1 + b1i и z2 = а2 + b2i называются равными, если а1 = a2, и b1 = b2, в этом случае пишут: z1 = z2.

Число  = а - bi называется сопряженным для числа z = а + bi, при этом числа z и  называются взаимно сопряженными. Например, числа z = 2 + i и z = 2 - i; z = -5 - i и z = -5 + i, z = i и z = -i будут взаимно сопряженными.

Арифметические действия над комплексными числами проводятся по следующим правилам. Пусть z1= а1+b1i z2= а2+b2i. Тогда: ; ;

. Таким образом, видим, что если z= a+bi и =a-bi, то z= a2+b2.

П р и м е р ы. Выполнить действия:

1. (2 + 3i) + (8 - 5i) = 10 - 2i.

2. (-1 - i) - (2 + 3i) = -3 - 4i.

3. (10 - i)(2 + i) = 21+8i.

4. .

Геометрически комплексные числа можно изображать точками плоскости, абсциссами которых служат действительные части, а ординатами - коэффициенты при мнимой единице. Таким образом, если z= a+bi, то на плоскости ХОУ это будет точка М(а, b). Так как любой вектор плоскости с началом в точке O(0,0) определяется координатами конца, то комплексные числа также изображают радиус – векторами (рис. 1).

Рис. 1

Кроме алгебраической формы комплексное число может быть записано с помощью тригонометрической формы. Введем следующие определения.

О п р е д е л е н и е. Модулем комплексного числа z= а+ bi называется арифметический квадратный корень из суммы квадратов его действительной части и коэффициента при мнимой единице: |z| = r = .

О п р е д е л е н и е. Аргументом комплексного числа z = а + bi называется число , для которого  .

Возьмем на плоскости точку М(а, b), пусть ей соответствует комплексное число z = а + bi. Обозначим через j угол, который образует радиус – вектор ОМ с положительным направлением оси ОХ.

Из D ОМА (рис.2) AO = OMcosj, AM = ОМsinj, но ОМ= = г, ОА =а; AM =b; тогда z = а + bi = rcosj + irsinj = r(cosj + isinj).

Запись числа z = r(cosj + isinj) называется тригонометрической формой комплексного числа.

С геометрической точки зрения, модуль комплексного числа представляет собой длину радиус-вектора, который это число изображает, а аргумент - это угол, который образует данный радиус-вектор с положительным направлением оси ОХ.

П р и м е р. Найти модуль, аргумент и записать число z = 1- i в тригонометрической форме.

Имеем r = = ; cosj =; sinj =; тогда j = и .

Используя тригонометрическую форму комплексного числа, умножение и деление комплексных чисел можно выполнять так: если , , то z1z2 = r1r2[cos (j1+j2) + isin (j1+j2)], .

Операции же возведения в целую степень и извлечения корня удобнее проводить в тригонометрической форме. Так, для возведения в целую степень n комплексного числа z = r(cosj + isinj) известна формула Муавра:

zn = rn(cos nj + isin nj).

Отметим, что возведение комплексных чисел в натуральную степень можно выполнять и в алгебраической форме, просто перемножая число само на себя или воспользовавшись биномом Ньютона.

П р и м е р. Найти (2 + 2i)5.

Если z = 2 +2i, то r =, cosj = , sinj = , j = . Тогда

, а .

Для извлечения корня степени n Î N из комплексного числа z = =r(cos j + isin j ) используется следующая формула:

, k = 0, 1, 2, ..., n-1.

П р и м e p. Найти . Найдем тригонометрическую форму подкоренного выражения:

; ; ; ; .

, k = 0, 1, 2, 3.

;

;

;

.

Контрольные вопросы

После ознакомления с теоретическим материалом студентам предлагается ответить на несколько вопросов по данной теме. Это делается с целью закрепления нового материала и контроля его усвояемости. Форма ввода ответа на вопросы предполагает использование как классической кроудеровской системы, так и возможность ввода конструированного ответа, когда студент конструирует свой ответ из предложенных фрагментов. Система вопросов подбиралась с учетом следующих требований:

– широкий охват нового теоретического материала;

– разноплановость в смысле возможных вариантов ответов;

– отсутствие вопросов предполагающих ответы типа «да» – «нет» и ответов требующих пояснения.

Блок ответов на контрольные вопросы устроен таким образом, что дав ответ на первый вопрос, студенты могут перейти к последнему, затем вернуться назад и исправить первый ответ. Ответ, данный на вопрос, не исчезает, он остается доступным для редактирования и по прошествию некоторого времени. Во время ответа на вопросы доступ к теоретическому материалу не возможен. После получения ответов на все вопросы студентам предлагается закрыть сеанс ответов на вопросы и перейти к решению практических заданий. После этого момента вернуться к вопросам и что-либо исправить уже нельзя. По окончанию сеанса работы с учебником система проанализирует полученные ответы на предмет их правильности и полноты и выставит оценку по пятибальной шкале.

Ниже приводится схема вопросов предлагаемых студентам:

1. Дайте определение числового множества.

2. Какие числовые системы вам известны?

3. Какие принципы лежат в основе расширения числовых множеств?

4. Как определяется множество натуральных чисел?

5. Что собой представляет метод математической индукции?

6. Дайте определение множества целых чисел.

7. Какие основные факты теории целых чисел вам известны?

8. Как определяется множество рациональных чисел?

9. Дайте определение множества действительных чисел.

10. Дайте определение системы комплексных чисел.

11. Какие формы употребляются для записи комплексных чисел?

12. Какова геометрическая интерпретация комплексного числа, его модуля и аргумента?

13. Как умножаются, делятся и возводятся в степень комплексные числа, заданные в тригонометрической форме.

14. Как извлечь корень n-й степени из комплексного числа?

Каждый из вопросов предполагает только один правильный ответ, ответ, не совпадающий с правильным, считается неправильным.

После завершения ответов на вопросы студенты переходят к решению практических заданий.

Практические задания

Целью включения в учебник практических заданий являлось:

– выработка у студентов устойчивых навыков решения подобных заданий;

– закрепление на практике полученных теоретических знаний;

– оценка качества усвоения студентами нового материала;

– повторение и восстановление в памяти ранее изученного материала;

– выработка у студентов навыков компьютерного общения и самостоятельного решения задач в условиях ограниченного времени.

При подборе практических заданий учитывались следующие требования:

– всестороннее отражение в заданиях нового теоретического материала;

– сходность предлагаемых заданий с теми, что рассматривались ранее в виде решенных примеров;

– отсутствие примеров повышенной трудности или требующих нестандартного подхода;

– простота получаемых ответов и удобство их ввода и редактирования.

Ниже приводиться схема предлагаемых практических заданий:

1. По делимому а и остатку r найти делители b и соответствующие частные q, если:

а) a = 100; r = 6; б) а = 158; r = 37; в) a = 497; r = 16.

2. Найти наибольшее целое число, дающее при делении на b = 13 частное q = 17.

3. Найти НОД каждой из следующих систем чисел:

а) (120; 144); б) (424; 477); в) (299; 391; 667).

4. Найти НОК каждой из следующих систем чисел:

а) [120; 96]; б) [75; 114]; в) [118; 177;413].

5. Каким числом, рациональным или иррациональным, является значение выражения 8 - 5х при х = 0,6; 1,2; -3,4?

6.Среди чисел ; 0; 0,(25); ; 3,14; ; 0,818118111811118... укажите рациональные и иррациональные.

7. Выполнить указанные действия:

а) (2 + 3i) (4 - 5i) + (2 - 3i) (4 + 5i); б) .

8. Найти тригонометрическую форму комплексного числа:

а) i; б) -2; в) 1 + i; г) .

9. Вычислить:

а) ; б) ; в) .

10. Извлечь корни:

a) ; б) ; в) ; г) ; д) .

11. Упростить:

а) ; б) .

Предложенные задачи студенты решают у себя в тетради, а потом вводят полученные ответы в компьютер. По окончанию редактирования ответов студенты закрывают сеанс решения практических заданий и система переходит в режим оценки полученных ответов. После анализа выставляется оценка, которая показывается студенту и заносится в ведомость вместе с входными данными студента. Преподаватель, периодически просматривая ведомости (скажем, в конце дня) получает список всех студентов проходивших обучение в этот день и их оценки, может оперативно оценить успешность изложения темы и, если необходимо, принять меры по корректировке учебного процесса.


ЗАКЛЮЧЕНИЕ

В этой дипломной работе рассматривалась тема разработки электронных обучающих систем на примере электронного учебника по математике. Сейчас, когда идет повсеместное внедрение средств новых информационных технологий в высшую школу и образовательный процесс вообще, остро ощущается нехватка программных средств. Для усиления эффективности этого процесса необходимо наличие развитого и многоцелевого программного обеспечения, на основе которого будут строится новые подходы к обучению с применением СНИТ. В этих условиях тема моей дипломной работы, предмет ее исследования представляется очень своевременным. Актуальность этого вопроса продиктована самой ситуацией на рынке программного обеспечения, когда есть люди готовые и стремящиеся внедрять новые программно-методические разработки, новые формы и методы обучения на практике, а несбалансированность российского рынка прикладного обеспечения не позволяет использовать целиком богатый потенциал, заложенный в СНИТ. Поэтому разработку компьютерного учебного пособия по математике, которое могло бы применятся в обучении студентов, считаю своей первостепенной задачей.

В данной дипломной работе передо мной были поставлены следующие цели:

– предоставить студентам, изучающим математику эффективное и легкодоступное средство обучения, которое включало бы в себя теоретический материал, вопросы и практические задания, и выполняло бы не только обучающую, но и контролирующую и оценивающую функции;

– провести анализ теоретического материала предлагаемого к компьютерной реализации с целью определения его пригодности к подобной реализации и степень ее эффективности;

– продолжить, и в чем то оживить, процесс внедрения средств новых информационных технологий в область преподавания математики, ускорить интеграцию математических и информационных дисциплин;

– предоставить нашему университету полноценное программное обеспечение, которое сможет применяться при обучении математике на младших курсах, и которым смогут пользоваться сотни студентов;

Для достижения поставленных целей и решения предложенной задачи мною, была проделана следующая работа:

– рассмотрено современная ситуация в процессе компьютеризации нашего общества и конкретно процесса образования в высшей школе;

– проведена классификация существующих на данный момент компьютерных обучающих систем по их назначению и целям применения в образовании;

– выделены основные условия успешного применения средств НИТ в учебном процессе;

– детально изучена методика создания компьютерных обучающих мультимедиа систем, которая была в дальнейшем использована при разработке собственного компьютерного приложения;

– рассмотрены принципы изложения информации с точки зрения современных теорий психологии и дизайна;

– досконально изучены наиболее популярные инструментальные средства разработки мультимедиа приложений: IBM LinkWay, Action 2.5, Multimedia ToolBook и среда программирования Borland Delphi 3.0;

– проведен сравнительный анализ этих инструментальных сред с целью выявления системы, наиболее отвечающей требованиям, предъявляемым при разработке учебника;

– проведен анализ теоретического материала предлагаемого к изучению студентам I курса отделения «информатика – иностранный язык» и выбран материал для первоочередной реализации в компьютерном учебнике;

– подобрана система контрольных вопросов для выявления уровня усвоения нового материала;

– подобрана система практических заданий предназначенных для закрепления изученного материала и выработке практических умений и навыков в решении подобных заданий;

– разработана система контекстно-вызываемых пояснений, призванная облегчить обучение студентов;

– разработан и реализован действующий фрагмент электронного учебника по математике, который может применяться при обучении студентов;

Практическую ценность своей работы вижу в том, что:

во-первых, мною был получен богатый опыт разработки обучающих компьютерных систем, в том числе освоены инструментальные средства разработки подобных систем;

во-вторых, и это главное, университет получит в свое распоряжение и сможет использовать в образовательном процессе новое электронное средство обучения – компьютерный учебник по математике.

В заключении хочется выразить свою благодарность моим научным руководителям Брановскому Юрию Сергеевичу и Рябогину Анатолию Константиновичу за практическую помощь в работе над электронным учебником и дипломным проектом.


ПРИЛОЖЕНИЕ А:

ТОЛКОВЫЙ СЛОВАРЬ СЛОВОСОЧЕТАНИЙ И ВЫРАЖЕНИЙ

База данных (БД) – именованная совокупность данных, которая отображает состояние объектов и их отношений в данной предметной области. БД обеспечивает использование одних и тех же данных в различных приложениях, допускает решение задач планирования, исследования, управления. Функционирование БД обеспечивается системой управления базами данных (СУБД).

База знаний (БЗ) – совокупность систематизированных основополагающих сведений, относящихся к определенной области знания, хранящихся в памяти ЭВМ, объем которых необходим и достаточен для решения заданного круга теоретических или практических задач. В системе управления БЗ используются методы искусственного интеллекта, специальные языки описания знаний, интеллектуальный интерфейс.

Видеокомпьютерная система – комплекс оборудования, позволяющий представлять пользователю различные виды воспринимаемой информации (текст, рисованная графика, видеофильм, движущиеся изображения, звук), обеспечивая ведение интерактивного диалога пользователя с системой.

Виртуальная реальность (VIRTUAL REALITY) - новая технология неконтактного информационного взаимодействия, реализующая с помощью комплексных мультимедиа – операционных сред иллюзию непосредственного вхождения и присутствия в реальном времени в стереоскопически представленном "экранном мире". Базовыми компонентами типичной системы "Виртуальная реальность" являются: перечни или списки с перечислением и описанием объектов, формирующих виртуальный мир, в субсистеме создания и управления объектами виртуального мира; субсистема, распознающая и оценивающая состояние объектов перечней и непрерывно создающая картину "местонахождения" пользователя относительно объектов виртуального мира; головной установочный дисплей (очки – телемониторы), в котором непрерывно представляются изменяющиеся картины "событий" виртуального мира; устройство с ручным управлением, реализованное в виде "информационной перчатки" или "спейс – болл", определяющее направление "перемещения" пользователя относительно объектов виртуального мира; устройство создания и передачи звука.

Инструментальное программное средство (ИПС) - программное средство, предназначенное для конструирования программных средств (систем) учебного назначения, подготовки или генерирования учебно – методических и организационных материалов, создания графических или музыкальных включений, сервисных "надстроек" программы. Наполнение ИПС предметным содержанием позволяет создавать различные типы ПС учебного назначения или ПС "смешанного" назначения. В монографии рассматриваются ИПС прикладного назначения: инструментальные системы, предназначенные для разработки автоматизированных систем контролирующего, консультирующего, тренингового назначения, позволяющие свести к минимуму "бумажное" предъявление учебного материала, заменяя его "экранным"; авторские программные системы, предназначенные для конструирования программных средств (систем) учебного назначения; системы компьютерного моделирования (демонстрационного, имитационного); программные среды со встроенными элементами технологии обучения, включающие как предметную среду, так и элементы педагогической технологии для ее изучения; инструментальные программные средства, обеспечивающие осуществление операций по систематизации учебной информации на основе использования системы обработки данных; экспертные системы учебного назначения как средство представления знаний, предназначенные для организации диалога между пользователем и системой, способной по требованию пользователя представить ход рассуждения при решении той или иной учебной задачи в виде, приемлемом для обучаемого. Наполнение ИПС предметным содержанием позволяет создавать различные типы ПС учебного назначения или ПС "смешанного" назначения, объединяющие в себе функциональное назначение различных типов.

Интерактивный диалог – взаимодействие пользователя с программной (программно – аппаратной) системой, характеризующееся в отличие от диалогового, предполагающего обмен текстовыми командами (запросами) и ответами (приглашениями), реализацией более развитых средств ведения диалога (например, возможность задавать вопросы в произвольной форме, с использованием "ключевого" слова, в форме с ограниченным набором символов); при этом обеспечивается возможность выбора вариантов содержания учебного материала, режима работы.

Информатизация образования – процесс обеспечения сферы образования методологией и практикой разработки и оптимального использования современных информационных технологий, ориентированных на реализацию психолого – педагогических целей обучения, воспитания. Этот процесс инициирует, во – первых, совершенствование механизмов управления системой образования на основе использования автоматизированных банков данных научно – педагогической информации, информационно – методических материалов, а также коммуникационных сетей; во – вторых, совершенствование методологии и стратегии отбора содержания, методов и организационных форм обучения, воспитания, соответствующих задачам развития личности обучаемого в современных условиях информатизации общества; в – третьих, создание методических систем обучения, ориентированных на развитие интеллектуального потенциала обучаемого, на формирование умений самостоятельно приобретать знания, осуществлять информационно – учебную, экспериментально – исследовательскую деятельность, разнообразные виды самостоятельной деятельности по обработке информации; в – четвертых, создание и использование компьютерных тестирующих, диагностирующих методик контроля и оценки уровня знаний обучаемых.

Информатизация общества – это глобальный социальный процесс, особенность которого состоит в том, что доминирующим видом деятельности в сфере общественного производства является сбор, накопление, продуцирование, обработка, хранение, передача и использование информации, осуществляемые на основе современных средств микропроцессорной и вычислительной техники, а также разнообразных средств информационного обмена.

Информационно – предметная среда со встроенными элементами технологии обучения - совокупность условий, способствующих возникновению и развитию процессов: активного информационного взаимодействия между преподавателем, обучаемым (обучаемыми) и СНИТ, ориентированного на выполнение разнообразных видов самостоятельной деятельности с объектами предметной среды, в том числе информационно – учебной, экспериментально – исследовательской деятельности, и осуществляемого оперированием компонентами CCO; функционирования организационных структур педагогического воздействия в рамках определенной технологии обучения. Информационно – предметная среда со встроенными элементами технологии обучения включает средства и технологии сбора, накопления, хранения, обработки, передачи учебной информации; средства представления и извлечения знаний; компоненты системы средств обучения, обеспечивая их взаимосвязь и функционирование организационных структур педагогического воздействия.

Информационно-учебная деятельность – это деятельность, основанная на информационном взаимодействии между обучаемым (обучаемыми), преподавателем и средствами новых информационных технологий, направленная на достижение учебных целей. При этом предполагается выполнение следующих видов деятельности: регистрация, сбор, накопление, хранение, обработка информации об изучаемых объектах, явлениях, процессах, в том числе реально протекающих, передача достаточно больших объемов информации, представленной в различной форме; интерактивный диалог – взаимодействие пользователя с программной (программно – аппаратной) системой, характеризующееся реализацией более развитых средств ведения диалога при обеспечении возможности выбора вариантов содержания учебного материала, режима работы; управление реальными объектами; управление отображением на экране моделей различных объектов, явлений, процессов, в том числе и реально протекающих; автоматизированный контроль (самоконтроль) результатов учебной деятельности, коррекция по результатам контроля, тренировка, тестирование.

Искусственный интеллект (ИИ) – искусственная (программная реализация) система, имитирующая решение человеком достаточно сложных задач в процессе его деятельности. Искусственный интеллект – направление современных научных исследований, сопровождающих и обуславливающих создание самих систем ИИ, разработанных на базе электронно – вычислительной, микропроцессорной техники и предназначенных для восприятия, обработки, хранения информации, а также формирования решений по целесообразному поведению в ситуациях, моделирующих состояния различных систем (например, природы, общества).

Компьютерная визуализация учебной информации: компьютерная визуализация изучаемого объекта - наглядное представление на экране ЭВМ объекта, его составных частей или их моделей, а при необходимости во всевозможных ракурсах, в деталях, с возможностью демонстрации внутренних взаимосвязей составных частей; компьютерная визуализация изучаемого процесса – наглядное представление на экране ЭВМ данного процесса или его модели, в том числе скрытого в реальном мире, а при необходимости – в развитии, во временном и пространственном движении, представление графической интерпретации исследуемой закономерности изучаемого процесса. Требование обеспечения компьютерной визуализации учебной информации, предъявляемой ППС, предполагает реализацию возможностей современных средств визуализации объектов, процессов, явлений (как реальных, так и "виртуальных"), а также их моделей, представление их в динамике развития, во временном и пространственном движении, с сохранением возможности диалогового общения с программой.

Контаминация – смешение, перетасовка информации, включающей текстовую, графическую, подвижные диаграммы, мультипликацию, видеоинформацию.

Мультимедиа-операционные среды, основанные на использовании технологии компакт – диска (CD – ROM), позволяют интегрировать аудиовизуальную информацию, представленную в различной форме (видеофильм, текст, графика, анимация, слайды, музыка), используя при этом возможности интерактивного диалога.

Технология Мультимедиа (Multimedia) – это совокупность приемов, методов, способов продуцирования, обработки, хранения, передачи аудиовизуальной информации, основанных на использовании технологии компакт – диска. Возможности систем Мультимедиа позволяют интегрировано представлять на экране компьютера любую аудиовизуальную информацию, реализуя интерактивный диалог пользователя с системой. При этом система обеспечивает возможность выбора по результатам анализа действий пользователя нужную линию развития представляемого сюжета или ситуации.

Объектно – ориентированные программные системы представляют собой программные системы, в основе которых лежит определенная модель объектного "мира пользователя".

Педагогическое программное средство (ППС) – программа, предназначенная для организации и поддержки учебного диалога пользователя с компьютером; функциональное назначение ППС – предоставлять учебную информацию и направлять обучение, учитывая индивидуальные возможности и предпочтения обучаемого. Как правило, ППС предполагают усвоение новой информации при наличии обратной связи пользователя с программой.

Представление знаний – способ формального выражения, представления всех видов знаний (представимых для машинной обработки), который используется для обработки знаний в системах искусственного интеллекта.

Программа прикладная – программа вычислительной машины: проблемная, функциональная, реализующая решение задачи, необходимой пользователю.

Программно – методическое обеспечение (ПМО) - учебно – воспитательного процесса – комплекс, в состав которого входят: программное средство учебного назначения или пакет программных средств учебного назначения; инструкция для пользователя программным средством учебного назначения или пакетом программных средств учебного назначения; описание методики (методические - рекомендации) по использованию программного средства учебного назначения или пакета программных средств учебного назначения.

Программное средство (ПС) учебного назначения – это программное средство, в котором отражается некоторая предметная область, в той или иной мере реализуется технология ее изучения, обеспечиваются условия для осуществления различных видов учебной деятельности. ПС учебного назначения предназначается для использования в учебно – воспитательном процессе, при подготовке, переподготовке и повышении квалификации кадров сферы образования, в целях развития личности обучаемого, интенсификации процесса обучения. Использование ПС учебного назначения ориентировано на: решение определенной учебной проблемы, требующей ее изучения и (или) разрешения (проблемно-ориентированные ПС); осуществление некоторой деятельности с объектной средой (объектно – ориентированные ПС); осуществление деятельности в некоторой предметной среде (предметно – ориентированные ПС).

Средства информатизации образования – это средства новых информационных технологий совместно (используемые вместе) с учебно – методическими, нормативно – техническими и организационно – инструктивными материалами, обеспечивающими реализацию оптимальной технологии их педагогически целесообразного использования.

Средства новых информационных технологий (СНИТ) – программно – аппаратные средства и устройства, функционирующие на базе микропроцессорной, вычислительной техники, а также современных средств и систем информационного обмена, обеспечивающие операции по сбору, продуцированию, накоплению, хранению, обработке, передаче информации. К СНИТ относятся: ПЭВМ; комплекты терминального оборудования для ЭВМ всех классов, локальные вычислительные сети, устройства ввода – вывода информации, средства ввода и манипулирования текстовой и графической информацией, средства архивного хранения больших объемов информации и другое периферийное оборудование современных ЭВМ; устройства для преобразования данных из графической или звуковой формы представления данных в цифровую и обратно; средства и устройства - манипулирования аудиовизуальной информацией (на базе технологии Мультимедиа или систем "Виртуальная реальность"); современные средства связи; системы искусственного интеллекта; системы машинной графики, программные комплексы (языки программирования, трансляторы, компиляторы, операционные системы, пакеты прикладных программ и пр.) и др.

Учебное, демонстрационное оборудование, сопрягаемое с ЭВМ, обеспечивает: управление с помощью компьютера объектами реальной действительности; сбор, обработку, передачу информации о реально протекающем процессе; визуализацию изучаемых закономерностей; автоматизацию процессов обработки результатов учебного эксперимента; графические построения. Состав учебного, демонстрационного оборудования, функционирующего на базе СНИТ: учебные роботы, управляемые ЭВМ, имитирующие промышленные устройства и механизмы; электронные конструкторы; комплект датчиков и устройств, обеспечивающих получение информации о регулируемом физическом параметре или процессе; средства пространственного ввода и манипулирования текстовой и графической информацией.

Формализация знаний – представление знаний в формализованной структуре средствами математической логики. Построение логических исчислений в математической логике позволяет применить ее средства к формализации целых областей науки. При этом области знания, формализованные средствами математической логики, приобретают вид формальных систем.

Экспертная обучающая система (ЭОС) является средством представления знаний, организует диалог пользователя с системой, обеспечивает: пояснение стратегии и тактики решения задач изучаемой предметной области; контроль уровня знаний, умений и навыков с диагностикой ошибок по результатам обучения и оценкой достоверности контроля; автоматизацию процесса управления самой системой в целом.

Экспертные системы (ЭС) – класс систем искусственного интеллекта, предназначенных для получения, накопления, корректировки знания, предоставляемого экспертами из некоторой предметной области, для получения нового знания, позволяющего решать определенные задачи, относящиеся к классу неформализованных, слабоструктурированных, объясняя ход их решения. Экспертные системы ориентированы на использование неформальных знаний, например, в таких областях, как медицина, геология, фармакология, образование и т.п.


Список использованной литературы:

 

1.  Борк A "История" новых технологий в образовании / Российский открытый университет - М., 1990.

2.  Брановский Ю.С. Введение в педагогическую информатику. - Ставрополь: СГПУ, 1995.

3.  Выявление экспертных знаний / О.И. Ларичев, А.И. Мечитов, Е.М. Мошкович, Е.М. Фуремс. - М.: Наука, 1989.

4.  Инструментальные средства для конструирования программных средств учебного назначения: (Обзор) / Институт проблем информатики АН CCCP; (Отв. ред.: Г.Л. Кулешова). - М., 1990.

5.  Интеллектуализация ЭВМ / (E.C. Кузин, А.И. Ройтман, И.Б. Фоминых, Г.К. Хахалин). - М.: Высшая школа, 1989.

6.  Информационная технология: Вопросы развития и применения. - Киев: Наук. думка, 1988.

7.  Концепция информатизации образования // Информатика и образование. - 1990. - № 1.

8.  Концепция использования новых информационных технологий в организационно-методическом обеспечении учебного заведения / Российский Центр информатизации образования - М., 1992.

9.  Кузнецов А.А. Сергеева Т.А. Компьютерная программа и дидактика // Информатика и образование. - 1986. - N 2.

10.Куликова М.Ф., Михалюк Э.В., Введение в математику: Методическое пособие. - Ставрополь: Издательство СГУ, 1996.

11.Куприенко В.Д., Мещерин И.В. Педагогические программные средства: Методические рекомендации для разработчиков ППС. / Омский ГПИ им. А.М. Горького. - Омск, 1991.

12.Материалы IV Международной конференции "Применение новых компьютерных технологий в образовании" (Троицк, 24 - 26 июня 1993 г.) / - Троицк, 1993.

13.Методические рекомендации по проектированию обучающих программ / Институт психологии Министерства просвещения УССР; - Киев, 1986.

14.Методические рекомендации по созданию и использованию педагогических программных средств: (Сб. ст.) / НИИ средств обучения АПН CCCP - М., 1991.

15.Мирская А, Сергеева Т. Обучающие программы оценивает практика // Информатика и образование. 1987. - 6.

16.Нильсон Н. Принципы искусственного интеллекта: Пер. с англ. - М.: Радио и связь, 1985.

17.Основы информатики н вычислительной техники: Методические рекомендации для слушателей / НИИ школьного оборудования и технических средств обучения АПН CCCP - М., 1988.

18.Периферийное оборудование комплекта учебной вычислительной техники и демонстрационное оборудование кабинета вычислительной техники / НИИ школьного оборудования и технических средств обучения АПН СССР - М., 1989.

19.Положение о порядке аттестации и сертификации педагогического программного продукта (ППП): Методические рекомендации / Российский центр информатизации образования. - M., 1992.

20.Представление и использование знаний / Под редакцией Х. Уэно, М. Исидзука. - М.: Мир, 1989.

21.Рубенкинг Нейл Дж. Delphi 3 для «чайников». - Киев, Диалектика, 1997.

22.Свириденко С.С. Современные информационные технологии. - М.: Радио и связь, 1989.

23.Словарь по кибернетике / Под редакцией В.С. Михалевича. - Киев, 1989.

24.Соломатин Н.М. Информационные семантические системы. - М.: Высшая школа, 1989.

25.Сопряжение датчиков и устройств ввода данных с компьютерами IBM РС / Под редакцией У. Томпкинса, Дж. Уэбстера. - М.: Мир, 1992.

26.Терминологический словарь по основам информатики и вычислительной техники / А.П. Ершов, Н.М. Шанский, А.П. Окунева, Н.В. Баско. - М.: Просвещение, 1991.

27.Технология сертификации программных средств учебного назначения (ПС УН) / Рос. центр информатизации образования (РОСЦИО) / Под редакцией А.И. Галкина, В.К. Мороз. - М., 1993.

28.Тодд Миллер, Дэвид Пауэл. Использование Delphi 3 / специальное издание. - М.-Киев, Диалектика, 1997.

29.Уваров A.IO. Компьютерная коммуникация в учебном процессе // Педагогическая информатика. - 1993. - № 1.

30.Хейес-Рот Ф., Уотермен Д., Ленат Д. Построение экспертных систем. - М.: Мир, 1987.

31.Цивенков Ю.М., Семенов Е.Ю. Компьютеризация в образовании развитых капиталистических стран: (Средства обучения в высшей школе) НИИ Высшая школа - М., 1989.

32.Экспертные системы: Принципы работы и примеры / Под редакцией Р. Форсайта. - М.: Радио и связь, 1987.


Информация о работе «Разработка электронного учебника по математике для студентов I курса, отделения "информатика - иностранный язык"»
Раздел: Педагогика
Количество знаков с пробелами: 124889
Количество таблиц: 11
Количество изображений: 2

Похожие работы

Скачать
448518
14
55

... также невысока и обычно составляет около 100 кбайт/с. НКМЛ могут использовать локальные интерфейсы SCSI. Лекция 3. Программное обеспечение ПЭВМ 3.1 Общая характеристика и состав программного обеспечения 3.1.1 Состав и назначение программного обеспечения Процесс взаимодействия человека с компьютером организуется устройством управления в соответствии с той программой, которую пользователь ...

Скачать
87494
0
1

... неподготовленный пользователь (в частности учащийся, с минимальным багажом знаний ПК), при запуске программы буквально за считанные минуты овладевает теми знаниями, требованиями необходимыми при работе с программой, что немаловажно при использовании компьютера при обучении математики. Курс ОИВТ в средней школе изучается в 10-11 классах, а если учесть, что программа написана для 5 или 6 класса, то ...

Скачать
216371
14
6

... и менеджмента Санкт-Петербургского Государственного технического университета соответствовал поставленной цели. Его результаты позволили автору разработать оптимальную методику преподавания темы: «Использование электронных таблиц для финансовых и других расчетов». Выполненная Соловьевым Е.А. дипломная работа, в частности разработанная теоретическая часть и план-конспект урока представляет ...

Скачать
107377
30
9

... воспринимаются даже на высоком научном уровне. Стремление упростить материал вряд ли целесообразно. Глава 3. Методические рекомендации курса «Математические основы моделирования 3D объектов» базового курса «компьютерное моделирование» для студентов педагогических ВУЗов специальности преподаватель информатики §1. Принципы построения электронного учебника Прежде чем рассмотреть ...

0 комментариев


Наверх