3.1. Выбор материала и конструкции
Для данного излучателя подойдет материал типа ЦТСНВ – 1, выбор его обусловлен, большим значением d31, данный параметр влияет на эффективность преобразователя.
Таблица 3.1 Значения постоянных пьезоэлектрического материала ЦТСНВ-1Постоянная | EEю1*10-11,Па | SE11*1012,м2/Н | СЕ1,м/с | d31,1010 | K31 | ||
Значение | 0,62 | 16,3 | 2900 | 2200 | 2 | 0,34 | |
Постоянная | tg d, % | n | QM |
| |||
Значение | 1,9 | 0,38 | 60 |
| |||
Материал для пассивного элемента выбираем из условия что он должен выдерживать большие нагрузки. Для этого подойдет титановый сплав.
Таблица 3.2
Значения постоянных пассивного материала ЦТСНВ-1
Постоянная | r, кг/м3 | Сзв, м/с | ЕЮ, Па | n |
Значение | 4500 | 6000 | 1,1*10-11 | 0,35 |
1 – пьезокерамическая пластина;
2 – пластина из титановоо сплава.
Данный преобразователь работает на изгибные колебания.
3.2 Расчет параметров преобразователя
Резонансная частота однородной пластины совершающей колебания изгиба определяется как:
3.1
где с – скорость звука в пластине, а – радиус пластины.
Отсюда можно рассчитать толщину пластины:
3.2
Так как пластина полуактивная, то ее толщина будет меньше, потому что скорость звука в титане больше скорости звука в ЦТСНВ-1.
Толщину титановой пластины возьмем tт=0.5*10-3м.
Тогда можно рассчитать резонансную частоту такой системы, приняв ее за многослойную.
1. Определяем положение нейтрали Z0, в которой при изгибе механическое напряжение равно «0»:
3.3
2. Определяем приведенные коэффициенты Пуассона
3.4
nK, nT – коэффициенты Пуассона для ПК и титана.
D=41.997 H*м
Площадь излучателя равна S=p×a2=3,14×(5×10-2)2=0,78×10-4 м2.
Определим массу составленной пластины M=p×a2×(rk×tk+rт×tт)=0.09 кг.
Определим резонансную частоту.
3.5
Резонансные частоты пластинчатых преобразователей зависят от геометрических соотношений и от упругих постоянных материалов биморфных элементов.
где a- коэффициент, зависящий от способа закрепления пластин*.
Наш излучатель по контуру закреплен с помощью резиновой полосы, тогда a=0,22.
, резонансная частота собранного преобразователя.
Видно что разброс составил 6176 Гц.
... с частотой, отличной от 400 Гц; 19) напряжение 220 В частотой 400 Гц; используется для: а) питания цепей управления преобразователей; б) питания цепей освещения и отопления; в) питания собственных нужд машиниста (электрочайник, электроплита, кондиционер, холодильник и т. д.). 3. Расчет вспомогательных цепей 3.1 Расчет вторичных ЭДС Среднее значение выпрямленного напряжения Ud ...
... и полевые) и различные высокочастотные диоды, работающие на прямой ветви вольт-амперной характеристики, а ко второй — параметрические диоды. В последних используется вольт-фарадная характеристика. Преобразователи частоты на биполярных транзисторах могут выполняться на одном триоде, т. е. с совмещенным гетеродином, и на двух триодах, в которых один выполняет функции смесителя, а другой — ...
... частоты на IGBT транзисторах, для частотно-регулируемого энергосберегающего электропривода с асинхронным приводом. Нагрузкой асинхронного двигателя служит центробежный насос для перекачки жидкости. Глава 1. Расчет управляемого выпрямителя для электродвигателя постоянного тока тиристорного электропривода 1.1 Выбор рациональной схемы управляемого выпрямителя и силовая часть электропривода ...
... Параметры обратного диода Максимально допустимый прямой импульсный ток Iи. пр. max= 60 А Максимально допустимое обратное импульсное напряжение Uи. обр= 400 В Максимальная частота f = 50 кГц 7. Расчет преобразователя При работе нереверсивного ШИП на якорь двигателя постоянного тока возможны два режима: непрерывных токов якоря и прерывистых токов якоря. Режим прерывистых токов якоря ...
0 комментариев