5.    Форма и параметры сигнала на управляющем входе УВХ.

6.    Напряжение источников питания УВХ.

В первую очередь зададимся  и найдем максимальное значение напряжения входного аналогового сигнала:

Зная, что современные методы построения УВД дают возможность реализации относительных ошибок  и до и ниже, можно установить требования к допустимой погрешности:

Ориентируясь на выполнение аналогового тракта на операционных усилителях (ОУ), зададимся стандартной величиной напряжения источников питания:

;

.

Как известно, в схемах на ОУ достаточно легко реализуются большое входное сопротивление (до единиц мегом) и малое выходное сопротивление (менее десятков-сотен ом), поэтому устанавливаем требования:

;

.

Длительность импульсов управления и период их следования оговорены в задании на проект. Подлежит определению величина времени хранения

и амплитудные значения импульса и впадины на управляющем входе УВХ. Т.к. управляющий тракт реализуется полностью на ОУ, выбираем

;

.

При расчете принципиальной схемы эти данные будут уточнены.

Основными характеристиками и параметрами фильтра нижних частот являются:

1.    Верхняя граничная частота .

2.    Неравномерность АЧХ в полосе пропускания.

3.    Скорость спада частотной характеристики на переходном участке АЧХ.

4.    Коэффициент передачи по напряжению в полосе пропускания.

5.    Входное  и выходное  сопротивления.

6.    Напряжение источников питания.

При использовании фильтров Баттерворта неравномерность АЧХ в полосе пропускания задавать не требуется, т.к. она получается минимальной.

Скорость спада выберем порядка 12 дБ/октаву.

Фильтры Баттерворта, выполненные на ОУ, имеют . В нашем случае зададимся . Исходя из этого, можно определить требования к максимальной величине входного напряжения:

Входное сопротивление выберем , а выходное определим по формуле:

Напряжение источников питания выберем таким же, как и для устройства выборки и хранения.

Согласующий усилитель должен обладать номинальным коэффициентом усиления разностного сигнала не менее чем

Этот коэффициент изменяется в пределах , т.е.

Коэффициент ослабления синфазной помехи должен быть не менее чем

Входное сопротивление выберем из соотношения:

Выходное сопротивление согласующего усилителя

Напряжения источников питания выберем таким же, как и для остальных блоков аналогового тракта.

Выбор и обоснование структурной схемы управляющего тракта

Рисунок 2. Структурная схема управляющего тракта.

Для генерации импульсов выборки используем генератор сигналов прямоугольной формы (Г1). С его выхода импульсы поступают на управляющий вход УВХ.

В соответствии с заданием на проект за время хранения АЦП должен обработать сигналы с выходов 4 датчиков. Для управления мультиплексором, выполняющим переключение между датчиками используем счетчик (СТ). Два первых выхода счетчика подключены к адресным входам мультиплексора. Для генерации импульсов на запуск АЦП используем генератор запускающийся по заднему фронту импульса выборки (Г2). Этот генератор за время хранения должен выработать 4 импульса длительностью  с интервалом .


Рисунок 3. Временные диаграммы.

В соответствии с заданием на проект пуск АЦП должен происходить спустя время  после окончания импульса выборки. Для осуществления задержки используем генератор генерирующий импульс длительностью , по заднему фронту импульса от Г2,.

Расчет технических требований к функциональным узлам управляющего тракта

Для реализации узлов управляющего тракта наиболее удобно использовать микросхемы с технологией ТТЛ. Микросхемы на основе этой технологии имеют достаточное быстродействие, низкое энергопотребление и наиболее удобный (в данной ситуации) набор логических функций.

Согласно заданию на проект амплитуда импульсов пуска АЦП составляет 8¸12 В. По техническим данным напряжение логической единицы, микросхем ТТЛ не превышает 5 В, следовательно, потребуется согласование по напряжению импульса пуска АЦП.

Для реализации генераторов импульсов выборки и пуска АЦП используем генераторы импульсов прямоугольной формы на основе мультивибраторов. Для реализации генератора задержки используем схему задержки на мультивибраторах.

Для питания узлов управляющего тракта потребуется напряжение:


Выбор и расчет принципиальных схем Согласующий усилитель

Для реализации согласующего усилителя (СУ) используем схему представленную на рисунке 4.


Рисунок 4. Принципиальная схема согласующего усилителя

Расчет СУ начнем с выбора операционного усилителя (ОУ). Критериями выбора является возможность удовлетворения следующих неравенств:

Этим условиям удовлетворяет операционный усилитель К153УД2:

Для достижения наибольшего ослабления синфазной помехи коэффициент усиления первой ступени усиления на DA1, DA2 примем наибольшим, а коэффициент усиления разностного усилителя на DA3 примем равным единице. В этом случае резисторы R5¸R8 получаются одного номинала, что облегчает их подбор.

Расчет элементов схемы начнем с каскада на DA3.

Зададимся номиналами резисторов исходя из неравенства:

По паспортным данным, отсюда примем.

Расчет каскадов DA1 и DA2 начнем с выбора суммарного сопротивления резисторов R1 и R2. Примем его равным . Тогда номиналы резисторов R3 и R4 определим по формуле:

Зная требуемый минимальный коэффициент усиления согласующего усилителя , рассчитаем максимальное суммарное сопротивление резисторов R1 и R2:

Исходя из максимального коэффициента усиления , определим минимальное значение суммарного сопротивления резисторов R1 и R2.

Номинал резистора R1 определим из стандартного ряда, по ближайшему меньшему значению .

Номинал резистора R2 определим по формуле:

Подберем ближайший номинал из стандартного ряда .

Допуск на относительный разброс номиналов резисторов, определим по формуле:

Оценим напряжение ошибки на выходе каскада, обусловленной дрейфом напряжений смещений нуля и разностных входных токов.

Сравним напряжение ошибки с

Фильтр низких частот

Рисунок 5. Фильтр низких частот Устройство выборки-хранения

Рисунок 6. Устройство выборки и хранения
Заключение

Для обработки аналоговых сигналов на современном этапе характерны цифровые методы, в результате чего операционный усилитель вытесняется микропроцессорами, ставшими универсальными компонентами электронных конструкций. Тем не менее, специалисты по аналоговым схемам продолжают создавать микросхемы с более высокой степенью интеграции, предназначенные для универсальных подсистем. На базе АЦП, ЦАП, коммутаторов, схем выборки и хранения, операционных усилителей и других аналоговых элементов разрабатывают операционные узлы в виде БИС, способные обрабатывать аналоговую информацию без преобразования ее в цифровую форму.

Датчики, пожалуй, являются теми устройствами, в которых острее всего нуждаются производственные участки предприятий, особенно промышленные роботы.

В области преобразования данных основной движущей силой является стремление к повышению точности и быстродействию. Однако существенное значение начинают приобретать и новые факторы: сильный сдвиг в сторону технологии КМДП, разработка преобразователей специального назначения и использование новых методов преобразования, в том числе схем коррекции погрешностей.

Весьма сложную задачу представляет собой организация ввода-вывода информации. Это связано с огромным разнообразием периферийных устройств, которые необходимы в микро-ЭВМ.


Список использованных источников

1.    Методические указания к курсовому проекту по курсу «Электронные цепи» по теме «Проектирование канала сбора аналоговых данных микропроцессорной системы» /Сост. А.В. Дорошков. – Сумы: СумГУ, 1991.

2.    Фолкенберри Л. Применения операционных усилителей и линейных интегральных схем: Пер. с англ. – М.: Мир, 1985.

3.    Микропроцессоры: В 3 кн. Кн 2. Средства сопряжения. Контролирующие и информационно-управляющие системы: Учеб. Для вузов / В.Д.Вернер, Н.В. Воробьев, А.В. Горячев и др.; Под ред. Л.Н. Преснухина. – М.: Высш. Шк., 1986.

4.    Цифровые и аналоговые интегральные схемы: Справ. Пособие / С.В. Якубовский, Н.А. Барканов, Л.И. Ниссельсон и др.; Под ред. С.В. Якубовского. – 2-е изд., перераб. И доп. – М.: Радио и связь, 1985.

5.    Ю.А. Мячин: 180 аналоговых микросхем (справочник) - М. Патриот, 1993.


Информация о работе «Проектирование канала сбора аналоговых данных микропроцессорной системы»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 14061
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
34380
7
0

... приведенных выше общей структурной схемы УСД, структурной схемы УУ , функционально-логической схемы КЦУ и структурной схемы ОУ. Поскольку проектируемое процессорное устройство является специализированным, реализующим всего одну микропрограмму сбора данных, оно не нуждается в командном (программном) управлении. Поэтому входы Z1ёZk , показанные на общей структурной схеме УСД (см. рис. 1), в ...

Скачать
126163
0
0

... характер сигналов интерфейса и их временную диаграмму, а также описание электрофизических параметров сигналов. На рис. 2.2 представлена общая схема сопряжения МП с устройствами ввода-вывода УВВ и ОЗУ в микропроцессорной системе. Рис 2.2. Схема интерфейсных связей микропроцессора Связь МП с УВВ требует пять групп связей, обеспечиваемых через выводы корпуса МП. По группе шин 1 передается ...

Скачать
24560
0
5

... . Центральный пункт управления обеспечивает взаимодействие с линейными контролируемыми пунктами ДЦ-МПК и эксплуатируемыми на железных дорогах линейными КП систем ДЦ «Луч» ЧДЦ, СКЦ и «Нева». Система ДЦ-МПК состоит из: устройств центрального пункта управления (ПУ), которые устанавливаются у поездного диспетчера (в отделении, региональном или дорожном центре и т.п.) и могут быть объединены ...

Скачать
275218
32
4

... К. Сатпаева» для просмотра и ввода информации системы оперативно-диспетчерского контроля и управления, создаваемые на Visual Basic. Специфика используемого в системе оперативно-диспетчерского контроля и управления РГП «Канал им. К. Сатпаева» ПО такая, что разработка ПО, как таковая, может производиться только при создании самой системы. Применяемое ПО является полуфабрикатом. Основная задача ...

0 комментариев


Наверх