2.2. Случай сигнала со случайной начальной фазой
Условные плотности вероятности для корреляционного интеграла при наличии сигнала:(2.9)
при отсутствии сигнала:
(2.10)
Модель корреляционного интеграла при отсутствии сигнала подчиняется релеевскому закону распределения, а при наличии сигнала, обобщенному релеевскому закону.
Максимально допустимая вероятность ложной тревоги
(2.11)
а пороговое значение отношение сигнал-помеха
(2.12)
Вероятность правильного обнаружения определяется, как
(2.13)
где S – переменная интегрирования.
Когда отношение сигнал-шум равенформулы (2.9) и (2.13) упрощается, и расчет вероятности Po можно вести по формуле
(2.14)
где Ф(U) – интеграл вероятности.
2.3. Случай со случайной амплитудой и начальной фазой
(2.15)
(2.16)
Вероятность ложной тревоги
(2.17)
Вероятность правильного обнаружения
(2.18)
Исключая qo из (2.18), получим
(2.19)
В случае приема последовательности из n одинаковых когерентных импульсов энергетическое отношение сигнал/шум
(2.20)
где Eu/No – энергетическое отношение сигнал/шум, соответствующее одному импульсу последовательности.
По характеристикам обнаружения определяются значения qn и пороговый сигнал, соответствующий полной энергии сигнала в пачке (ES). Поэтому в случае когерентного обнаружения, энергия минимального порогового сигнала одного импульса должна быть – ES/n. А в случае некогерентного обнаружения ES/Ön. Выигрыш при когерентном приеме составляет Ön раз. Параметр обнаружения q может быть представлен как отношение максимального напряжения сигналаAs к среднеквадратичного значения шума
(2.21)
При этом пороговом сигналом определяется коэффициент распознавания (различимости) d, который вычисляется как минимальное отношение сигнал/шум, обеспечивающее обнаружение с требуемой вероятностью:
для случая когерентного обнаружения
для случая некогерентного обнаружения
где Wи=As2/2 – импульсная мощность.
При n=1 различие между когерентным и некогерентным приемами отсутствует.
3. РАСЧЕТ ТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ГАС
Оптимальная частота работы ГАСОптимальную частоту выбираем из расчета, что сигнал будет иметь приемлемый шум и малое поглощение.
где rmax– дистанция до цели обнаружения (км).
Но так как можно перебирать частоту в некотором диапазоне, то выбираем частоту fопт=39000, при этом получаем выигрыш в минимальном шуме, но имеем более сильное поглощение сигнала.
Полоса пропускания приемного трактаОна складывается из доплеровского смещения частот и ширины спектра эхо-сигнала
Df=Dfд+Dfсп.
Найдем Dfд – доплеровское смещение частотыгде Vн – скорость носителя,
Vц – скорость цели обнаружения,
с – скорость звука в среде.
Найдем Dfс – ширина спектра эхо-сигнала
Коэффициент 1,37 выбирается из того условия что отношение сигнал-шум является опртимальным для нашего случая.
где tи=2×Dr/c=2×0,3/1483=0,67 (мс), где ×Dr – разрешающая способность по дальности. Тогда Dfсп=2032 (Гц).
Df=2032+2104=4136 (Гц).
Уровень шума, воздействующий на вход приемного тракта
Для расчета шума воспользуемся спектрально-энергетическими характеристиками шумов, в данном случай характеристикой для моря. Частота излученного сигнала равна 39000 Гц, тогда Pпр=2×10-5 Па/Гц2.
Уровень шумового давления на входе приемной антенны
P’ш=Uш/g,
где Uш – уровень шумов на входе в приемный тракт и шум приемного тракта;
g - чувствительность антенны в режиме приема (мкВ/Па),
Uш.эл – уровень шумов электронного тракта (мкВ).
тогда P’ш=0,017 (Па).
Площадь антенны
S=a×b.
a=(50,5×с)/fопт×Qa=(50,5×1483)/39000×10=0,192 (м),
b=(50,5×с)/fопт×Qb=(50,5×1483)/39000×10=0,192 (м).
S=0,192 ×0,192 =0,037 (м2).
Где Qa,Qa - разрешающая способность по угловым координатам.
Интенсивность
I=| P’ш /r×c |=0,017/103×1483=1,127×10-8,
где r - плотность среды распространения звука (вода),
с – скорость звука в среде.
Среднеквадратичное напряжение шума
Wш=I×S=1,127×10-8×0,037 =4,157×10-10.
Спектральная плотность мощности шумовой помехи
No= Wш/Df=4,157×10-10/4136=1,005×10-13(Вт/Гц).
... фильтра является величиной конечной. так как отклик фильтра не может появиться раньше чем придет воздействие то to ³ Tc. 2) длительность Tc < ¥ Þ оптимальная фильтрация применима лишь для импульсных сигналов. При синтезе СФ в качестве входного аналогового сигнала в курсовой работе используется импульсный сигнал, построенный в соответствии с какой либо бинарной кодовой ...
... амплитуда солнечной помехи растет пропорционально телесному углу зоны чувствительности. То есть метод оптимальной пространственно-частотной фильтрации позволяет повысить помехоустойчивость пассивного оптического средства обнаружения как к конвективной, так и к солнечной помехам. Двухдиапазонный метод приема ИК излучений. Сущность этого метода заключается во введении в ИКСО второго канала, ...
... КНИ явления слепой скорости и неоднозначности по дальности, для устранения которых понадобилось изменить общепринятую схему построения приемника сопровождения по дальности, а также задействовать ЦВС для решения ряда задач. Важное техническое решение было найдено, при проектировании приемной системы, в использовании одних и тех же узлов и элементов системы синхронизации для работы РЛС в режиме ЛЧМ ...
... обзора земли с целью обеспечения возможности автономной навигации по характерным наземным радиолокационным ориентирам. 3. Обоснование, выбор и расчет тактико-технических характеристик радиолокационной станции 3.1. Обоснование, выбор и расчет тактических характеристик РЛС 3.1.1. Максимальная дальность действия RmaxМаксимальная дальность действия задается тактическими требованиями и зависит ...
0 комментариев