3.4. Влияние напряжения и токов смещения на работу усилителя на ОУ

Наличие Uсм и Jсм приводит к возникновению в усилительном каскаде на этом ОУ выходного напряжения сдвига Uвых.сдв при нулевом входном сигнале. Амплитудные характеристики неинвертирующего усилителя при различных Uвых.сдв приведены на рис.3.8.

Рис.3.8.

Видно, что наличие Uвых.сдв ¹0 приводит к погрешности усиления полезных сигналов, а так же к изменению динамических диапазонов входных сигналов положительной и отрицательной полярности. Величина Uвых.сдв определяется параметрами ОУ и схемой его включения.

Порядок оценки Uвых.сдв в усилителях на ОУ.

1. В анализируемом усилителе определяют эквивалентное сопротивление R по постоянному току между входом «–» ОУ и общей точкой («землей») и эквивалентное сопротивление R+ по постоянному току между входом «+» ОУ и общей точкой (R+ и R определяют с учетом сопротивления Rс источников сигналов по постоянному току).

2. Рассчитывают напряжения, вызываемые Jсм1, Jсм2 на инвертирующем и неинвертирующем входах усилителя

U1=Jсм1 R, U2=Jсм2 R+.

3. Рассчитывают коэффициенты усиления К+ и К на постоянном токе.

4. Рассчитывают Uвых.сдв по формуле

Uвых.сдв = К+Uсм + КU1 + К+U2 (3.15)

Например, для схемы инвертирующего усилителя (рис.3.2)

при Rc<<R1,

R=R1Rос / (R1+Rос), R+=R2,

Uвых.сдв.» Rос[(Uсм+Jсм2R2)/R1 - Jсм1], (3.15а)

для схемы неинвертирующего усилителя

Uвых.сдв.» Rос[(Uсм+Jсм2Rс)/R1 - Jсм1], (3.15б)

3.5. Измерение напряжения и токов смещения ОУ

Измерение Uсм

Из формул (3.3), (3.7), (3.15) следует, что Uсм можно определить по выходному напряжению усилителя при R=R+=0, то есть путем измерения Uвых. В схеме повторителя рис.3.9. при R=0.

рис.3.9.

Uсм= Uвых (3.16)

 R+=0

 R=0.

Измерение Jсм1 и Jсм2

При R+=0, R¹0 (см. формулу (3.15)) Uвых= Uсм– Jсм1 R, откуда

(3.17)

аналогично, при R=0, R+¹0, Uвых= Uсм+ Jсм2 R+,

(3.18)

Определив Jсм1 и Jсм2 , рассчитывают Jсм и Jр по формулам (3.1) и (3.1а).

4.ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

В состав лабораторной установки входят:

1) лабораторный макет;

2) лабораторный блок питания (типа ТЭС 13);

3) универсальный вольтметр (типа В7-15, В7-16).

Лабораторный макет содержит:

а) усилитель на ОУ (типа К140УД9) с коммутационными элементами, обеспечивающими набор схем инвертирующего усилителя, повторителя напряжения, не инвертирующего усилителя;

б) дифференциальный усилитель на ОУ с внешними сопротивлениями, выполненными на микросхемной резистивной матрице (типа 301НР1); дифференциальный усилитель включается специальным переключателем (Вкл) и расположен в правой нижней части лицевой панели лабораторного макета;

в) два встроенных источника регулируемого постоянного напряжения (Uвых= – 1.5…+1.5В), расположенных на верхней части корпуса лабораторного макета (U1, U2);

г) встроенное переменное сопротивление (для измерения Rвых усилителя), выводы которого расположены в левой верхней части лицевой панели лабораторного макета;

д) встроенный источник регулируемого постоянного напряжения, предназначенного для компенсации напряжения смещения усилителя (с возможностью грубой и плавной регулировки), расположенный в левой нижней части лицевой панели лабораторного макета.

Питание лабораторного макета осуществляется от источника постоянного напряжения Еп=24…30В.

Внешний вид лицевой панели с нанесенной на нее принципиальной схемой лабораторного макета представлен на рис.4.1.


Информация о работе «Исследование усилительных каскадов»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 20831
Количество таблиц: 3
Количество изображений: 10

Похожие работы

Скачать
4763
14
7

... Rс Re Rн Rг C1 Cc Ce Cн кОм кОм кОм кОм кОм кОм мкФ мкФ мкФ пФ 18 3,9 2 0,47 3,6 0,7 1,0 1,5 110 50 Тип транзистора: КТ503В Необходимо составить эквивалентную схему усилительного каскада в области средних частот (СЧ), и определить коэффициент усиления K0. В области средних частот сопротивления конденсаторов Cc, Ce малы, следовательно, на эквивалентной схеме они будут ...

Скачать
19447
0
6

... РТ, оценить стабильность этого положения при различных возмущающих факторах, вычислить значения постоянных токов и напряжений в схеме. В основе анализа статического и динамического режимов работы транзисторного усилительного каскада лежат методы последовательного упрощения схемы усилителя схемами замещения и использование теории активных линейных четырехполюсников. Транзистор как усилительный ...

Скачать
23082
5
3

... каскада в режиме А – 20–30%. Обычно в этом режиме работают каскады предварительного усиления или маломощные выходные каскады. 9. Определение напряжений и токов транзисторного усилительного каскада графоаналитическим методом   На графиках всех характеристик, начиная с входной, приводятся временные диаграммы соответствующих сигналов (см. рисунок 3). Ось времени проведена перпендикулярно к оси ...

Скачать
13402
0
14

ТОРНЫЙ КАСАКАД НА БИПОЛЯРНОМ ТРАНЗИСТОРЕ  Резисторные усилительные касакады широко применяются в различных областях радиотехники. Идеальный усилитель имеет равномерную АЧХ во всей полосе частот, реальный усилитель всегда имеет искажения АЧХ, прежде всего - снижение усиления на низких и высоких частотах, как показано на рис. 3.1. Рис.3.1.  Схема резисторного усилителя переменного тока на ...

0 комментариев


Наверх