5.2.   Разработка принципиальной схемы индикации.

Максимальное прямое напряжение на сегменте индикатора равно 3,6 В. Наша задача – понизить напряжение выхода дешифратора (+8,2 В) до напряжения 3,6 В. Реализуем эту задачу так как показано на рисунке 14:

Рисунок 14.

Найдём сопротивление резистора R по закону Ома:

    (38.)   

Где U – напряжение выхода дешифратора 8,2 В,

Uпр – максимальное прямое напряжение на сегменте индикатора, 3,6 В,

I – прямой ток сегмента, 20 мА.

Выберем по ГОСТу номинал резистора: R=240 Ом

Рассчитаем мощность этого резистора:

Расчётная мощность резистора должна быть меньше выбранной по ГОСТу:

Р=0,125 (Вт)

5.3.   Расчет мощности и тока, потребляемых схемой индикации.

Мощность потребления схемой индикации (Ринд) будет определяться по формуле (39).

    (39.)   

где Ри –мощность потребляемая тремя индикаторами;

Рд – мощность потребляемая тремя дешифраторами.

Ток потребления одним сегментом индикатора равен 20 мА. Возьмём крайний случай когда зажигаются все сегменты. В этом случае ток потребления индикатором будет равен 140 мА при прохождении прямого напряжения через сегмент 3,6 В. Мощность потребления схемой индикации равна:

Потребляемая мощность дешифратора 0,05 Вт

6.    Проектирование схем управления исполнительными механизмами.

6.1.   Выбор типа интегральной микросхемы ждущего мультивибратора.

Смысл управления состоит в формировании сигнала заданной длительности. Эту задачу выполняет ждущий мультивибратор.

Из КМОП – серии следует отметить микросхему К564АГ1 (рисунок 15).

Рисунок 15. УГО микросхемы К564АГ1

Микросхема К564АГ1 содержит два ждущих мультивибратора (ЖМ). Каждый ЖМ имеет прямой Q и инверсный  выходы. ЖМ можно запустить любым перепадом входного сигнала. Вход +TR используется для запуска ЖМ положительным перепадом, при этом на неиспользуемый вход -TR подать “единичный” сигнал (+Uп). Для запуска ЖМ отрицательным перепадом сигнал подается на вход -TR, а на +TR - “нулевой”. Вход R используется для укорачивания выходного импульса или для предотвращения появления выходного импульса при включении напряжения питания, например, как показано на рисунке 15.

Длительность возбужденного состояния ЖМ для Ct можно определить по формуле:

    (40.)   

6.2.   Расчет параметров элементов времязадающих цепей

По формуле 40 рассчитаем ёмкость конденсатора C5 для импульса τ1=0.019 (сек), задавшись R25=180000 (Ом):

Так как время τ1= τ2 параметры времязадающих цепей одинаковы.

Заданные резисторы и найденные конденсаторы соответствуют своими номиналами соответствующим ГОСТам.

Определим мощность резисторов:

Мощность PR25=PR28.

По ГОСТ выберем мощность резисторов равную 0,125 Вт.

Мощность потребления схемами ждущих мультивибраторов определяется:

6.3.   Расчет мощности и тока, потребляемых схемой.

Рассчитаем суммарную мощность потребления всей схемой, суммировав полученные мощности в вышеизложенных расчётах, получим:

Определим ток потребления схемой:

7.    Разработка источника питания.

7.1.   Определение исходных данных (количество источников напряжения, требуемые величины напряжений и токов нагрузки).

Микросхемы КМОП – серии можно питать широким спектром напряжений, от +3В до +15 В. Малым напряжением не рекомендуется питать эти микросхемы, сильно понижается быстродействие и увеличивается чувствительность к помехам. Максимальным напряжением также не целесообразно запитывать КМОП – микросхемы, даже при малом повышении напряжения питания возможен выход из строя микросхемы. Мы остановимся на золотой середине. Обеспечив приличное быстродействие и запас по питанию, определим напряжения питания микросхем равным +12 В.

Микросхемы компараторов необходимо согласовать по выходу с выбранной нами КМОП – серии по напряжению. Для этого запитаем их от источника двухполярного напряжения ±12 В.

Источник питания на +12 В должен обеспечивать ток нагрузки равный 0,21 А, а на напряжение -12 В – 0,003 А.

Для обеспечения задания порогов соответствующих напряжений на входах микросхем DA1 – DA3 необходим источник опорного напряжения на 12 В. Источник опорного напряжения должен обеспечивать ток нагрузки равный 0,008 А.


Информация о работе «Электронное устройство счета и сортировки»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 43356
Количество таблиц: 11
Количество изображений: 17

Похожие работы

Скачать
144824
1
0

... все названные критерии. Причем данным набором дело не ограничивается, поскольку наука и практика не стоит на месте, появляются новые реалии и обстоятельства. 2.2.Проблема выбора система электронного документооборота на предприятиях малого и среднего бизнеса Основными российскими тенденциями начала третьего тысячелетия стал безбумажный технологический бум во всех сферах человеческой ...

Скачать
82569
1
1

... устойчивыми банками; ·  использовать надежный механизм защиты информации, основанный на проверенных криптографических стандартах; ·  оставаться дешевой для Internet-торговцев и покупателей. 7. Банки и электронные деньги Политика содержания отделений, с их большими расходами и низкой рентабельностью, обязательно окажется под угрозой там, где еще не оказалась. Небольшой американский Mark ...

Скачать
142378
5
0

... . Поэтому так легко путешествовать по Всемирной паутине (WWW — Worl Wide Web), переходя с сайта на сайт по гиперссылкам. Для отображения в «плоском* тексте смысловых связей между основными разделами или понятиями можно использовать гипертекст. Гипертекст позволяет структурировать документ путем выделения в нем слов-ссылок (гиперссылок). При активизации гиперссылки (например, с помощью щелчка мышью ...

Скачать
225314
2
0

... раза. В силу специфичности информации схемы определения количества информа­ции, связанные с ее содержательной стороной, оказы­ваются не универсальными. Универсальным оказывается алфавитный подход к измерению количества информации. В этом подходе сообщение, представленное в какой-либо знаковой системе, рассматривается как совокупность сообще­ний о том, что заданная позиция в последовательнос­ти ...

0 комментариев


Наверх