Содержание
ВВЕДЕНИЕ................................................................................................................ 2
1. ВЫБОР СЕРИИ И ТИПОВ МИКРОСХЕМ И РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ ПО КОРПУСАМ............................................. 3
1.1. Выбор физических элементов для реализации схемы и обзор параметров выбранной серии..................................................................................................... 3
1.2. Распределение элементов функциональной схемы по корпусам............ 4
2. РАЗМЕЩЕНИЕ ЭРЭ НА МОНТАЖНОМ ПРОСТРАНСТВЕ..................... 6
3. ТРАССИРОВКА МОНТАЖНЫХ СОЕДИНЕНИЙ...................................... 10
3.1 Трассировка с помощью алгоритма Прима............................................... 10
3.2 Трассировка по алгоритму Краскала.......................................................... 12
3.3 Трассировка классическим волновым алгоритмом Ли............................ 14
ЗАКЛЮЧЕНИЕ....................................................................................................... 15
ЛИТЕРАТУРА......................................................................................................... 16
ВВЕДЕНИЕ
Основные принципы изготовления и применения печатных схем стали известны в начале ХХ века, однако промышленный выпуск печатных схем и плат был организован лишь в начале 40-х годов.
С переходом на микроэлектронные элементы, резким уменьшением размеров и возрастанием быстродействия схем первое место занимают вопросы обеспечения постоянства характеристик печатных проводников и взаимного их расположения. Значительно усложнились задачи проектирования и оптимального конструирования печатных плат и элементов.
Печатные платы нашли широкое применение в электронике, позволяя увеличить надёжность элементов, узлов и машин в целом, технологичность (за счёт автоматизации некоторых процессов сборки и монтажа), плотность размещения элементов (за счёт уменьшения габаритных размеров и массы), быстродействие, помехозащищённость элементов и схем. Печатный монтаж – основа решения проблемы компановки микроэлектронных элементов. Особую роль печатные платы играют в цифровой микроэлектронике. В наиболее развитой форме (многослойный печатный монтаж) он удовлетворяет требования конструирования вычеслительных машин третьего и последующих поколений.
При разработке конструкции печатных плат проектеровщику приходится решать схемотехнические (минимизация кол-ва слоёв, трассировка), радиотехнические (расчёт паразитных наводок), теплотехнические (температурный режим работы платы и элементов), конструктивные (размещения), технологические (выбор метода изготовления) задачи.
В данном курсовом проекте при разработке печатной платы мы попытались показать методы решения лишь схемотехнических и технологических задач.
1. ВЫБОР СЕРИИ И ТИПОВ МИКРОСХЕМ И РАСПРЕДЕЛЕНИЕ ЭЛЕМЕНТОВ ФУНКЦИОНАЛЬНОЙ СХЕМЫ ПО КОРПУСАМ.
1.1. Выбор физических элементов для реализации схемы и обзор параметров выбранной серии.
Выбор серии интегральных микросхем для реализации блока оперативной памяти в первую очередь продиктован скоростью работы такого блока. В этом отношении микросхемы серии ТТЛШ (транзисторно–транзисторная логика со структурой Шотки) наиболее предпочтительны.
Электрическая функциональная схема блока оперативной памяти содержит сорок пять элементов 2И-НЕ, три элемента 3И-НЕ.
Для реализации блока оперативной памяти выбираем следующие типы микросхемы:
две микросхемы серии КР1531ЛА3 (корпус содержит 4 элемента 2И-НЕ);
две микросхемы серии КР1531ЛА4 (корпус содержит 3 элемента 3И-НЕ);
Основные параметры микросхем ТТЛШ серии КР1531:
— напряжение питания Uип = 5В ± 10%;
— выходное напряжение низкого уровня не более U0вых = 0,5В;
— выходное напряжение высокого уровня не менее U1вых = 2,5В;
— время задержки распространения tзд.р. = 4,5нс;
— потребляемая мощность Pпот = 4мВт;
— сопротивление нагрузки Rн = 0,28кОм;
1.2. Распределение элементов функциональной схемы по корпусам.
Распределение четырёх элементов 2И-НЕ составляющих триггер очевидно:
Поскольку внутренних связей в таком элементе гораздо больше чем внешних, то очевидно их помещение в одну микросхему КР1531ЛА3.
Для распределения девяти оставшихся элементов 2И-НЕ по трём корпусам микросхем КР1531ЛА3 вычерчиваем часть электрической функциональной схемы блока оперативной памяти, содержащую эти элементы, и строим соответствующий ей граф G1 (рис.1.1).
а) Выбираем базовую вершину – вершину имеющую максимальное количество связей. Поскольку в нашем случае все вершины имеют одинаковое количество связей, выбираем любую из них, например вершину Х1.
б) Определяем множество вершин подключённых к базовой: {4;7}
Для каждой из вершин рассчитываем функционал по формуле:
Li=aij-pij
где aij – число связей вершины;
pij – число связей с базовой вершиной;
В нашем случае функционал равен:
L7=L4=2-1=1;
Для объединения с базовой вершиной необходимо выбрать вершину с наименьшим функционалом. Поскольку в нашем случае вершины Х7 и Х4 равнозначны, то объединяем их с Х1. Поскольку мощность блока (4 элемента 2И-НЕ в одной микросхеме) ещё не достигнута, а все оставшиеся вершины идентичны по отношению к вершине Х(1+4+7), дополним блок вершиной Х2, объединив их в одну микросхему. Получим граф:
Теперь, в качестве базовой изберём вершину Х3. Рассуждая так же как и в предыдущем шаге объединим в одну микросхему вершины Х3, Х6, Х9 и Х5. Вершину Х8 придётся поместить в отдельную микросхему.
Проанализировав полученные результаты можно увидеть, что для компоновки элементов Х1-Х9 необходимо 3 микросхемы КР1531ЛА3, причём в последней из них будет задействован лишь один элемент. В нашем случае рациональней будет уменьшить мощность блока до трёх. В этом случае количество необходимых микросхем не изменится, а элементы распределятся следующим образом: Х(1+4+7), Х(2+5+8), Х(3+6+9). Окончательно примем к проектированию именно такой вариант компоновки.
Три элемента 3И-НЕ поместим в одну микросхему КР1531ЛА3 поскольку в этом случае мощность блока (кол-во элементов в микросхеме) равна количеству элементов в функциональной схеме.
На основании полученных результатов строим электрическую принципиальную схему блока оперативной памяти (см. графическую часть).
... либо в позициях, указанных разработчиком; 5) максимум числа цепей простой конфигурации. Наибольшее распространение в алгоритмах размещения получил первый критерий, что объясняется следующими причинами: уменьшение длин соединений улучшает электрические характеристики устройства, упрощает трассировку печатных плат; кроме того, он сравнительно прост в реализации. В зависимости от конструкции ...
... - Text Style (Текстовый стиль). В этом диалоговом окне установки такие же, как в программе Symbol Editor. 4 РАЗРАБОТАТЬ КОНТАКТНЫЕ ПЛОЩАДКИ Во всех системах автоматизированного проектирования печатных плат информация о графике контактных площадок содержится отдельно от графики корпуса компонента. Это связано с тем, что при изготовлении фотошаблона требуется обеспечить сопряжение программных ...
... 0 0 0 0 11-12 Разработка электрической схемы пульта проверки 4 5 100 50 12-13 Выбор вариантов конструкции 5 6 100 50 13-14 Расчет параметров конструкции 2 3 70 50 14-15 Разработка печатной платы пульта проверки 7 8 200 180 15-16 Объединение конструкции и платы 7 9 200 150 16-17 Выполнение графической части 8 9 210 170 17-18 Подготовка основной ...
... R2 детали от станка Ст1 к станку Ст2. Но по условию задания система загружена одной деталью. Задание 3. Методы постановки задач и алгоритмы автоматизированного проектирования средств вычислительной техники 3.1 Выбрать схему электрическую принципиальную Выбираем схему Рис.2. Принципиальная электрическая схема устройства 3.2 Провести формализацию и, используя два алгоритма ( ...
0 комментариев