8. Выберем расстояние координатной сетки h для черчения равным 1 мм и масштаб чертежа 500:1, тогда расстояние координатной сетки на шаблоне
мкм.
9. Определяем топологическую ширину резистора bтоп . За bтоп принимают значение большее или равное bпром значение, кратное расстоянию координатной сетки фотошаблона.
В нашем случае
R1 - R4 : | bтоп = 6 мкм |
R5 : | bтоп = 34 мкм |
10. Выбираем тип контактных площадок резистора. Исходя из расчитанной топологической ширины выбираем для R1 - R4 площадку, изображенную на рис.1а, для R5 – на рис. 1б.
| а | б |
|
Рис. 1 Контактные площадки | |||
11. Находим реальную ширину резистора на кристалле, учитывая погрешности, вызванные растравливанием окисла и боковой диффузией:
b = bтоп + 2(Dтрав + Dу) | ( 5.8) |
В нашем случае:
R1 - R4 : | b= 7,8 мкм |
R5 : | b = 35,8 мкм |
12. Определяем расчетную длину резистора:
lрасч = b(R/rS – n1k1 – n2k2 – 0,55Nизг | ( 5.9) |
где Nизг – количество изгибов резистора на 90°; k1, k2 – поправочные коэффициенты, которые учитывают сопротивление околоконтактных областей резистора при разных конструкциях этих областей; n1, n2 – количество околоконтактных областей каждого типа.
В нашем случае
R1 - R4 : | lрасч = 198,579 мкм |
R5 : | lрасч = 284,4 |
13. Расчитаем длину резистора на фотошаблоне, учитывая растравливание окисла и боковую диффузию:
lпром = lрасч + 2(Dтрав + Dу) | ( 5.10) |
в нашем случае
R1 - R4 : | lпром = 200,84 мкм |
R5 : | lпром = 286,2 мкм |
14. За топологическую длину резистора lтоп берем ближайшее к lтоп значение, кратное расстоянию координатной сетки на фотошаблоне.
В нашем случае
R1 - R4 : | lтоп = 200 мкм |
R5 : | lтоп = 286 мкм |
15. Расчитываем реальную длину резистора на кристалле:
l = lтоп - 2(Dтрав + Dу) | ( 5.11) |
R1 - R4 : | l = 198,2 мкм |
R5 : | l = 284,2 мкм |
... всех сферах деятельности человека. Созданию систем автоматического проектирования, промышленных роботов, автоматизированных и автоматических производственных линий, средств связи и многому другому способствует микроэлектроника. /1/ Цель работы: проектирование топологии гибридной интегральной микросхемы К2ТС241 (RST-триггер) 1. ОБЩИЙ РАЗДЕЛ 1.1 Характеристика схемы Гибридные ...
... ). Перспективы развития микроэлектроники Функциональная микроэлектроника. Оптоэлектроника, акустоэлектроника, магнетоэлектроника, биоэлектроника и др. Содержание лекций 1 Цели и задачи курса “Электронные, квантовые приборы и микроэлектроника”. Физика полупроводников. p-n- переходы. Полупроводниковые диоды. Разновидности и характеристики. 2 Транзисторы. Принцип действия, разновидности и ...
... принципов и явлений, реализация которых позволяет получить приборы со сложным схемотехническим или системотехническим функциональным назначением. В функциональной микроэлектронике начинают использовать (рис.1): Рис. 1. Основные направления функциональной микроэлектроники. Оптические явления (когерентная и некогорентная оптика, нелинейная оптика, электрооптика, магнитооптика). Их ...
... технологии широкополосного доступа - по электросетям. Было разработано оборудование PLC первого и второго поколений. Достигнутая предельная скорость передачи данных не превышала 10-14 Мб/с. Реальная же скорость передачи данных в тестовых сетях PLC с применением этого оборудования отличалась на порядок и составляла 1-2 Мб/с. Кроме этого, абонентское оборудование PLC имело сравнительно высокую ...
0 комментариев