Содержание

1.Введение

2.Режимы процессора

2.1.Реальный режим

2.2.Защищенный режим

3.Типы данных

4.Регистры

4.1.Регистры общего назначения

4.2.Регистр системных флагов

4.3.Регистры сегментов

4.4.Регистры управления сегментированной памятью

4.5.Указатель команд

4.6.Регистры управления

4.7.Регистры отладки

4.8.Буфер ассоциативной трансляции

5.Система команд

5.1.Формат команд

5.2.Описание обозначения

5.3.Список команд

1. Введение

МП 80386 вышел на рынок с уникальным преимуществом. Он является единственным 32-разрядным МП, для которого пригодно существующее прикладное програмное обеспечение, написанное для МП предыдущих моделей от 8086/88 до 80286. Любые программы, написанные для этих МП могут выполняться на 80386 без всяких исправлений и дополнений, лишь только с увеличением скорости их выполнения. Это свойство МП называется совместимостью снизу вверх. Также, дополнительными преимуществами этого МП являются многозадачность, встроенное управление памятью, виртуальная память с разделением на страницы, защита программ и большое адресное пространство. Аппаратная совместимость с предыдущими моделями сохранена посредством динамического изменения разряд­ности магистрали.

МП 80386 выполнен на основе технологии CHMOS III фирмы Intel, которая вобрала в себя быстродействие технологии HMOS (МДП высокой плотности) и малое потребление мощности техноло­гии CMOS (КМДП). МП 80386 предусматривает переключение прог­рамм, выполняемых под управлением различных операционных систем, таких как MS-DOS и UNIX. Это свойство позволяет разра­ботчикам программ включать стандартное прикладное программное обеспечение для 16-разрядных МП непосредственно в 32-разрядную систему. Процессор определяет адресное пространство как один или несколько сегментов памяти любого размера в диапазоне от 1 байт до 4 Гбайт. Эти сегменты могут быть индивидуально защище­ны уровнями привилегий и таким образом избирательно разде­ляться различными задачами.

2. Режимы процессора

Для более полного понятия системы команд МП 80386 необхо­димо предварительно описать общую схему его работы и архитек­туру.

В данном реферате не раскрывается более подробно значения некоторых специфических слов и понятий, считая, что читатель предварительно ознакомился с МП 8086 и МП 80286 и имеет представление о их работе и архитектуре. Описываются только те функции МП 80386, которые отсутствуют или изменены в предыду­щих моделях МП.

МП 80386 имеет два режима работы: режим реальных адресов, называемый реальным режимом, и защищенный режим.

2.1. Реальный режим

При подаче сигнала сброса или при включении питания уста­навливается реальный режим, причем МП 80386 работает как очень быстрый МП 8086, но, по желанию программиста, с 32-разрядным расширением. В реальном режиме МП 80386 имеет такую же базовую архитектуру, что и МП 8086, но обеспечивает доступ к 32-раз­рядным регистрам. Механизм адресации, размеры памяти и обра­ботка прерываний МП 8086 полностью совпадают с аналогичными функциями МП 80386 в реальном режиме.

Единственным способом выхода из реального режима является явное переключение в защищенный режим. В защищенный режим МП 80386 входит при установке бита включения защиты (РЕ) в нуле­вом регистре управления (CR0) с помощью команды пересылки (MOV to CR0). Для совместимости с МП 80286 с целью установки бита РЕ может быть также использована команда загрузки слова состо­яния машины LMSW. Процессор повторно входит в реальный режим в том случае, если программа командой пересылки сбрасывает бит РЕ регистра CR0.

2.2. Защищенный режим

Полные возможности МП 80386 раскрываются в защищенном ре­жиме. Программы могут исполнять переключение между процессами с целью входа в задачи, предназначенные для режима виртуально­го МП 8086. Каждая такая задача проявляет себя в семантике МП 8086 (т.е. в отношениях между символами и приписываемыми им значениями независимо от интерпретирующего их оборудования). Это позволяет выполнять на МП 80386 програмное обеспечение для МП 8086 - прикладную программу или целую операционную систему. В то же время задачи для виртуального МП 8086 изолированы и защищены как друг от друга, так и от главной операционной системы МП 80386.


Информация о работе «80386 процессор»
Раздел: Компьютерные науки
Количество знаков с пробелами: 44298
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
38039
3
0

... высокой производительности. Реализация потенциала архитектуры требует новейшей микроэлектронной технологии, точного разделения функций и внимания к внешним операциям кристалла, в особенности к взаимодействию процессора с памятью. Включение этих свойств обеспечивает 80386 самую высокую произвидительность по сравнению с любым другим существующим микропроцессором. Микропроцессор 80386 реализован ...

Скачать
82626
0
0

... шине данных процессора и посылает слово данных в процессор. Наоборот, выходной порт представляет собой приемник данных ( например, регистр), который избирательным образом подключается к шине данных процессора. Будучи выбран, выходной порт принимает слово данных из микропроцессора. Процессор должен иметь возможность координировать скорость своей работы со скоростью работы ...

Скачать
132006
3
0

... преодолеть присущие архитектуре х86 ограничения (различная длина инструкций). В случае использования ин­струкций различной длины, чипы 4-го поколения могут одновременно об­рабатывать 1 команду, процессоры 5-го поколения (Pentium) - 2 коман­ды. И только микропроцессор AMD5k86 способен обрабатывать до 4 ин­струкций за такт. Использование раздельного КЭШа инструкций и данных (объем КЭШа инструкций ...

Скачать
51860
5
5

... Особенность однокристального микропроцессора – наличие внутренней шины, по которой происходит обмен информацией между устройствами микропроцессора. По функциональным возможностям микропроцессор соответствует процессору ЭВМ, выполненному на 20-40 ИС малой и средней степени интеграции, но обладает большим быстродействием, существенно меньшими размерами, массой, потребляемой мощностью и стоимостью. ...

0 комментариев


Наверх