5.4. Адресная арифметика
Если P является указателем, то каков бы ни был сорт
объекта, на который он указывает, операция P++ увеличивает P
так, что он указывает на следующий элемент набора этих
объектов, а операция P +=I увеличивает P так, чтобы он ука-
зывал на элемент, отстоящий на I элементов от текущего эле-
мента.эти и аналогичные конструкции представляют собой самые
простые и самые распространенные формы арифметики указателей
или адресной арифметики.
Язык “C” последователен и постоянен в своем подходе к
адресной арифметике; объединение в одно целое указателей,
массивов и адресной арифметики является одной из наиболее
сильных сторон языка. Давайте проиллюстрируем некоторые из
соответствующих возможностей языка на примере элементарной
(но полезной, несмотря на свою простоту) программы распреде-
ления памяти. Имеются две функции: функция ALLOC(N) возвра-
щает в качестве своего значения указатель P, который указы-
вает на первую из N последовательных символьных позиций, ко-
торые могут быть использованы вызывающей функцию ALLOC прог-
раммой для хранения символов; функция FREE(P) освобождает
приобретенную таким образом память, так что ее в дальнейшем
можно снова использовать. программа является “элементарной”,
потому что обращения к FREE должны производиться в порядке,
обратном тому, в котором производились обращения к ALLOC.
Таким образом, управляемая функциями ALLOC и FREE память яв-
ляется стеком или списком, в котором последний вводимый эле-
мент извлекается первым. Стандартная библиотека языка “C”
содержит аналогичные функции, не имеющие таких ограничений,
· 106 -
и, кроме того, в главе 8 мы приведем улучшенные варианты.
Между тем, однако, для многих приложений нужна только триви-
альная функция ALLOC для распределения небольших участков
памяти неизвестных заранее размеров в непредсказуемые момен-
ты времени.
Простейшая реализация состоит в том, чтобы функция раз-
давала отрезки большого символьного массива, которому мы
присвоили имя ALLOCBUF. Этот массив является собственностью
функций ALLOC и FREE. Так как они работают с указателями, а
не с индексами массива, никакой другой функции не нужно
знать имя этого массива. Он может быть описан как внешний
статический, т.е. Он будет локальным по отношению к исходно-
му файлу, содержащему ALLOC и FREE, и невидимым за его пре-
делами. При практической реализации этот массив может даже
не иметь имени; вместо этого он может быть получен в резуль-
тате запроса к операционной системе на указатель некоторого
неименованного блока памяти.
Другой необходимой информацией является то, какая часть
массива ALLOCBUF уже использована. Мы пользуемся указателем
первого свободного элемента, названным ALLOCP. Когда к функ-
ции ALLOC обращаются за выделением N символов, то она прове-
ряет, достаточно ли осталось для этого места в ALLOCBUF. Ес-
ли достаточно, то ALLOC возвращает текущее значение ALLOCP
(т.е. Начало свободного блока), затем увеличивает его на N,
с тем чтобы он указывал на следующую свободную область. Фун-
кция FREE(P) просто полагает ALLOCP равным P при условии,
что P указывает на позицию внутри ALLOCBUF.
DEFINE NULL 0 /* POINTER VALUE FOR ERROR REPORT */
DEFINE ALLOCSIZE 1000 /* SIZE OF AVAILABLE SPACE */
TATIC CHAR ALLOCBUF[ALLOCSIZE];/* STORAGE FOR ALLOC */
TATIC CHAR ALLOCP = ALLOCBUF; / NEXT FREE POSITION */
HAR ALLOC(N) / RETURN POINTER TO N CHARACTERS */ INT N;
(
IF (ALLOCP + N <= ALLOCBUF + ALLOCSIZE) {
ALLOCP += N;
RETURN(ALLOCP - N); /* OLD P */
} ELSE /* NOT ENOUGH ROOM */
RETURN(NULL);
)
REE(P) /* FREE STORAGE POINTED BY P */
HAR *P;
(
IF (P >= ALLOCBUF && P < ALLOCBUF + ALLOCSIZE)
ALLOCP = P;
)
· 107 -
Дадим некоторые пояснения. Вообще говоря, указатель мо-
жет быть инициализирован точно так же, как и любая другая
переменная, хотя обычно единственными осмысленными значения-
ми являются NULL (это обсуждается ниже) или выражение, вклю-
чающее адреса ранее определенных данных соответствующего ти-
па. Описание
STATIC CHAR *ALLOCP = ALLOCBUF;
определяет ALLOCP как указатель на символы и инициализирует
его так, чтобы он указывал на ALLOCBUF, т.е. На первую сво-
бодную позицию при начале работы программы. Так как имя мас-
сива является адресом его нулевого элемента, то это можно
было бы записать в виде
STATIC CHAR *ALLOCP = &ALLOCBUF[0];
используйте ту запись, которая вам кажется более естествен-
ной. С помощью проверки
IF (ALLOCP + N <= ALLOCBUF + ALLOCSIZE)
выясняется, осталось ли достаточно места, чтобы удовлетво-
рить запрос на N символов. Если достаточно, то новое значе-
ние ALLOCP не будет указывать дальше, чем на последнюю пози-
цию ALLOCBUF. Если запрос может быть удовлетворен, то ALLOC
возвращает обычный указатель (обратите внимание на описание
самой функции). Если же нет, то ALLOC должна вернуть некото-
рый признак, говорящий о том, что больше места не осталось.
В языке “C” гарантируется, что ни один правильный указатель
данных не может иметь значение нуль, так что возвращение ну-
ля может служить в качестве сигнала о ненормальном событии,
в данном случае об отсутствии места. Мы, однако, вместо нуля
пишем NULL, с тем чтобы более ясно показать, что это специ-
альное значение указателя. Вообще говоря, целые не могут ос-
мысленно присваиваться указателям, а нуль - это особый слу-
чай.
Проверки вида
IF (ALLOCP + N <= ALLOCBUF + ALOOCSIZE)
и
IF (P >= ALLOCBUF && P < ALLOCBUF + ALLOCSIZE)
демонстрируют несколько важных аспектов арифметики указате-
лей. Во-первых , при определенных условиях указатели можно
сравнивать. Если P и Q указывают на элементы одного и того
же массива, то такие отношения, как <, >= и т.д., работают
надлежащим образом. Например,
P < Q
· 108 -
истинно, если P указывает на более ранний элемент массива,
чем Q. Отношения == и != тоже работают. Любой указатель мож-
но осмысленным образом сравнить на равенство или неравенство
с NULL. Но ни за что нельзя ручаться, если вы используете
сравнения при работе с указателями, указывающими на разные
массивы. Если вам повезет, то на всех машинах вы получите
очевидную бессмыслицу. Если же нет, то ваша программа будет
правильно работать на одной машине и давать непостижимые ре-
зультаты на другой.
Во-вторых, как мы уже видели, указатель и целое можно
складывать и вычитать. Конструкция
P + N
подразумевает N-ый объект за тем, на который P указывает в
настоящий момент. Это справедливо независимо от того, на ка-
кой вид объектов P должен указывать; компилятор сам масшта-
бирует N в соответствии с определяемым из описания P разме-
ром объектов, указываемых с помощью P. например, на PDP-11
масштабирующий множитель равен 1 для CHAR, 2 для INT и
SHORT, 4 для LONG и FLOAT и 8 для DOUBLE.
Вычитание указателей тоже возможно: если P и Q указывают
на элементы одного и того же массива, то P-Q - количество
элементов между P и Q. Этот факт можно использовать для на-
писания еще одного варианта функции
STRLEN:
STRLEN(S) /* RETURN LENGTH OF STRING S */
CHAR *S;
{
CHAR *P = S;
WHILE (*P != '\0')
P++;
RETURN(P-S);
}
При описании указатель P в этой функции инициализирован
посредством строки S, в результате чего он указывает на пер-
вый символ строки. В цикле WHILE по очереди проверяется каж-
дый символ до тех пор, пока не появится символ конца строки
\0. Так как значение \0 равно нулю, а WHILE только выясняет,
имеет ли выражение в нем значение 0, то в данном случае яв-
ную проверку можно опустить. Такие циклы часто записывают в
виде
WHILE (*P)
P++;
Так как P указывает на символы, то оператор P++ передви-
гает P каждый раз так, чтобы он указывал на следующий сим-
вол. В результате P-S дает число просмотренных символов,
· 108 -
т.е. Длину строки. Арифметика указателей последовательна:
если бы мы имели дело с переменными типа FLOAT, которые за-
нимают больше памяти, чем переменные типа CHAR, и если бы P
был указателем на FLOAT, то оператор P++ передвинул бы P на
следующее FLOAT. таким образом, мы могли бы написать другой
вариант функции ALLOC, распределяющей память для FLOAT,
вместо CHAR, просто заменив всюду в ALLOC и FREE описатель
CHAR на FLOAT. Все действия с указателями автоматически учи-
тывают размер объектов, на которые они указывают, так что
больше ничего менять не надо.
За исключением упомянутых выше операций (сложение и вы-
читание указателя и целого, вычитание и сравнение двух ука-
зателей), вся остальная арифметика указателей является неза-
конной. Запрещено складывать два указателя, умножать, де-
лить, сдвигать или маскировать их, а также прибавлять к ним
переменные типа FLOAT или DOUBLE.
... основаниям. При этом философская абстракция языка оказывается неразрывно связана с основными темами и движениями философии в целом. Более конкретно, на ранние стадии традиционно рассматриваемого в рамках АФ анализа обыденного языка глубокое влияние оказала философия Дж. Э. Мура, особенно его учение о здравом смысле, согласно которому такие понятия, как «человек», «мир», «я», «внешний мир», « ...
... и других странах СНГ, а также облегчение доступа к русской и мировой культуре и науке. Таким образом, судя по данным наших исследований, востребованность русского языка осталась в республике достаточно высокой. Многие представители современной молдавской молодежи продолжают, как их отцы и деды, тянуться к русской культуре, научным и техническим достижениям России. Русский язык остается языком ...
... рисуночное словесно-слоговое письмо). Памятники среднеэламского периода (14—12 вв. до н.э.) выполнены аккадской клинописью. Памятники новоэламского периода относятся к 8—6 вв. до н.э. Был официальным языком в персидском государстве Ахеменидов в 6—4 вв. предполагается, что он, подвергшись влиянию древнеперсидского, сохранился до раннего средневековья. 7. Бурушаски язык Язык бурушаски ( ...
... /диалект), скифский, согдийский, среднеперсидский, таджикский, таджриши (язык/диалект), талышский, татский, хорезмийский, хотаносакский, шугнано-рушанская группа языков, ягнобский, язгулямский и др. Они относятся к индоиранской ветви индоевропейских языков. Области распространения: Иран, Афганистан, Таджикистан, некоторые районы Ирака, Турции, Пакистана, Индии, Грузии, Российской Федерации. Общее ...
0 комментариев