1.3. Интерпретации в математическом моделировании
Интерпретация (от латинского "interpretatio" - разъяснение, толкование, истолкование) определяется как совокупность значений (смыслов), придаваемых каким-либо образом элементам некоторой системы (теории), например, формулам и отдельным символам. В математическом аспекте интерпретация - это экстраполяция исходных положений какой-либо формальной системы на какую-либо содержательную систему, исходные положения которой определяются независимо от формальной системы. Следовательно, можно утверждать, что интерпретация - это установление соответствия между некоторой формальной и содержательной системами. В тех случаях, когда формальная система оказывается применимой (интерпретируемой) к содержательной системе, т.е. установлено что между элементами формальной системы и элементами содержательной системы существует взаимно однозначное соответствие, все исходные положения формальной системы получают подтверждение в содержательной системе. Интерпретация считается полной, если каждому элементу формальной системы соответствует некоторый элемент (интерпретант) содержательной системы. Если указанное условие нарушается, имеет место частичная интерпретация.
При математическом моделировании в результате интерпретации задаются значения элементов математических выражений (символов, операций, формул) и целостных конструкций.
Основываясь на приведенных общих положениях, определим содержание интерпретации применительно к задаче математического моделирования.
Определение 3. Интерпретация в математическом моделировании - это информационный процесс преобразования абстрактного математического объекта (АМО) в конкретную математическую модель (ММ) конкретного объекта на основе отображения
непустого информационного множества данных и знаний, определяемого АМО и называемого областью интерпретации, в кообласть - информационное множество данных и знаний, определяемое предметной областью и объектом моделирования и называемое областью значений интерпретации.
Таким образом, интерпретацию следует рассматривать как один из основополагающих механизмов (инструментов) технологии математического (научного) моделирования.
Именно интерпретация, придавая смысл и значения элементам (компонентам) математического выражения, делает последнее математической моделью реального объекта.
1.4. Виды и уровни интерпретаций
Создание математической модели системного элемента - многоэтапный процесс. Основным фактором, определяющим этапы перехода от АМО к ММ, является интерпретация. Количество этапов и их содержание зависит от начального (исходного) информационного содержания интерпретируемого математического объекта - математического описания и требуемого конечного информационного содержания математического объекта - модели. Полный спектр этапов интерпретации, отражающий переход от АМО - описания к конкретной ММ, включает четыре вида интерпретаций: синтаксическую (структурную), семантическую(смысловую), качественную(численную) и количественную. В общем случае, каждый из перечисленных видов интерпретации может иметь многоуровневую реализацию. Рассмотрим более подробно перечисленные виды интерпретаций.
Cинтаксическая интерпретация
Синтаксическую интерпретацию будем рассматривать как отображение морфологической (структурной) организации исходного АМО в морфологическую организацию структуру заданного (или требуемого) АМО. Синтаксическая интерпретация может осуществляться как в рамках одного математического языка, так и различных математических языков.
При синтаксической интерпретации АМО возможны несколько вариантов задач реализации.
Задача 1. Пусть исходный АМО не структурирован, например, задан кортежем элементов. Требуется посредством синтаксической интерпретации сформировать морфологическую структуру математического выражения
(1)
Задача 2. Пусть АМО имеет некоторую исходную морфологическую структуру,
которая по тем или иным причинам не удовлетворяет требованиям исследователя (эксперта). Требуется посредством синтаксической интерпретации преобразовать в соответствии с целями и задачами моделирования исходную структуру Stв адекватную требуемую St,т.е.
(2)
Задача 3. Пусть АМО имеет некоторую исходную морфологическую структуру St, удовлетворяющую общим принципам и требованиям исследователя с точки зрения её синтаксической организации. Требуется посредством синтаксической интерпретации конкретизировать АМО со структурой Stдо уровня требований, определяемых целями и задачами моделирования
(3)
Таким образом, синтаксическая интерпретация математических объектов даёт возможность формировать морфологические структуры АМО, осуществлять отображение (транслировать) морфологические структуры АМО с одного математического языка на другой, конкретизировать или абстрагировать морфологические структурные представления АМО в рамках одного математического языка.
Семантическая интерпретация
Семантическая интерпретация предполагает задание смысла математических выражений, формул, конструкций, а также отдельных символов и знаков в терминах сферы, предметной области и объекта моделирования. Семантическая интерпретация даёт возможность сформировать по смысловым признакам однородные группы, виды, классы и типы объектов моделирования. В зависимости от уровней обобщения и абстрагирования или, наоборот, дифференциации или конкретизации, семантическая интерпретация представляется как многоуровневый, многоэтапный процесс.
Таким образом, семантическая интерпретация, задавая смысл абстрактному ма-
тематическому объекту, "переводит" последний в категорию математической модели с объекта-оригинала, в терминах которого и осуществляется такая интерпретация.
Качественная интерпретация
Интерпретация на качественном уровне предполагает существование качественных параметров и характеристик объекта-оригинала, в терминах (значениях) которых и производится интерпретация. При качественной интерпретации могут использоваться графические и числовые представления, посредством которых, например, интерпретируется режим функционирования объекта моделирования.
Количественная интерпретация
Количественная интерпретация осуществляется за счет включения в рассмотрение количественных целочисленных и рациональных величин, определяющих значение параметров, характеристик, показателей.
В результате количественной интерпретации появляется возможность из класса, группы или совокупности аналогичных математических объектов выделить один единственный, являющийся конкретной математической моделью конкретного объекта-оригинала.
Таким образом, в результате четырех видов интерпретаций - синтаксической, семантической, качественной и количественной происходит поэтапная трансформация
АМО, например, концептуальной метамодели (КММ) функциональной системы , в конкретную математическую модель (ММ) конкретного объекта моделирования.
Глава Концептуальное метамоделирование функционирования системного
элемента
... и количественной происходит поэтапная трансформация АМО, например, концептуальной метамодели (КММ) функциональной системы , в конкретную математическую модель (ММ) конкретного объекта моделирования. Глава II Концептуальное метамоделирование функционирования системного элемента 2.1. Системный элемент как объект моделирования Понятие "элемент" является ...
... модель (ММ) конкретного объекта моделирования.Глава II Концептуальное метамоделирование функционирования системного элемента 2.1. Системный элемент как объект моделирования Понятие "элемент" является одним из фундаментальных в общей теории систем (ОТС) - системологии. Оно происходит от латинского "Elementarius" и имеет смысл: начальный, простой, простейший, ...
... , динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые. Основы системного анализа Деление систем на физические и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определенными отображениями (моделями) ре ...
... того, имеется ряд так называемых системных атрибутов, относящихся не к отдельным объектам, а к модели в целом. Значения атрибутов всех объектов модели по окончании моделирования Выводятся в стандартный отчет GPSS/PC. Большая часть атрибутов дос- тупна программисту и составляет так называемые стандартные число- вые атрибуты (СЧА), 0которые могут использоваться в ...
0 комментариев