2.1 Модель

Данный блок представляет собой класс, методами которого являются функции (2,3) и два дополнительных метода (15,16). Параметрами класса выступают коэффициенты уравнений (2,3), представленных в виде динамических массивов, а также их предельные значения, полученные из предметной области. В результате, универсальным интерфейсом класса будет являться набор методов и параметров, которые инкапсулируют все необходимые данные. Приведем пример в синтаксисе языка Pascal.

TFtp = function(X : TPoint) : Real of Object;

TModel = class (TObject)

vF : TFtp;

vG : TFtp;

vSigmaF : TFtp;

vDeltaF : TFtp;

constructor Create;

procedure AddK(pK,pKmin,pKmax : Real; Ks : ShortString);

function GetK(pI : integer) : TK;

procedure SetK(pI : integer; pK : TK);

function KCount : integer;

function GetKParam(pI : integer; pX : Real) : Real;

procedure GetKFSigma(pI,pJ : integer; pX: Real; var pK,pS : Real);

procedure GetKFDelta(pI,pJ : integer; pX: Real; var pK,pS : Real);

Из выше приведенного примера можно видеть, что в интерфейсе класса TModel отражены все необходимые методы для решения поставленной задачи (Таблица №1).

Метод класса TModel Пояснение
GetKParam Функция предназначенная для проведение параметрического анализа и построения зависимостей по формуле (9)
GetKFSigma Процедура предназначена для получения параметрических зависимостей кривой нейтральности (Lσ) кратности относительно двух параметров
GetKFDelta Процедура предназначена для получения параметрических зависимостей кривой кратности (LΔ) относительно двух параметров.

Таблица №1. Основные методы класса TModel

Остальные методы и параметры класса TModel предназначены для задания начальных условий и взаимодействия с внешними классами.

2.2 Численные методы

Для каждого шага исследования необходимо применять свой метод расчетов, однако, ООП позволяет создать ряд основных вычислительных механизмов, с помощью которых можно численно рассчитать все необходимые уравнения. Стоит отметить, что каждый из рассматриваемых методов представляет собой набор численных алгоритмов не привязанных к конкретной функции. Таким образом любой метод можно представить в виде метода некоторого общего класса. Входными параметрами данного метода будут являться функции, выше они описаны в виде класса TFtp, и переменные которые следует получить. Рассмотрим численные методы по каждой стадии параметрического анализа.

2.2.1 Нахождение стационарных точек системы

В этом случае достаточно применение метода последовательных разбиений на отрезки. Условие (4) позволяет взять достаточно малый шаг h от которого и зависит точность решения.

2.2.2 Исследование устойчивости стационарных точек

Задачу по исследованию стационарных точек необходимо разбить на три стадии. На первой стадии выясняется условие вхождения исследуемого параметра в систему. Для большей наглядности рассмотрим данный этап на примере построения параметра Применение объектно-ориентированного программирования в параметрическом анализе структур Тьюрингаиз (7). Благодаря тому, что параметр Применение объектно-ориентированного программирования в параметрическом анализе структур Тьюринга входит лишь в одно уравнение системы (7), мы можем получить значения x1 x2 из второго уравнения методом дихотомии, с высокой степенью точности. Подставляя, таким образом, x1 x2 в функцию F и повторно применяя метод дихотомии, но уже для Применение объектно-ориентированного программирования в параметрическом анализе структур Тьюринга мы получим искомую зависимость.

Необходимо отметить, что условия вхождения параметра Применение объектно-ориентированного программирования в параметрическом анализе структур Тьюринга только в одно уравнение справедливо и для других систем поскольку вытекает из методики построения данных уравнений. В случае применения указанного алгоритма для систем уравнений, полученных из иной предметной области или же при рассмотрении структур Тьюринга для трех переменных, где такое условие уже не действует, следует применять иные вычислительные алгоритмы, например, рассмотренный ранее метод последовательного разбиения на отрезки.


Информация о работе «Применение объектно-ориентированного программирования в параметрическом анализе структур Тьюринга»
Раздел: Информатика, программирование
Количество знаков с пробелами: 15943
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
108958
3
9

... уровня. В общем случае в качестве вариантов решений можно использовать классы стратегий, предлагаемых в экономической литературе. 16. Особенности проектирования интеллектуальной экономической информационной системы   Проектирование ИИС начинается с обследования предметной области. Современные технологии такого обследования базируются на концепции и программных средствах реинжиниринга бизнес- ...

Скачать
138248
8
0

... со строгими методами оптимизации образуют жесткую структуру, изменения которой осуществляются разработчиками или специальными лицами, администрирующими информационную компоненту и сопровождающими систему автоматизированного проектирования. Они не являются специалистами в данной предметной области. ЛОГИЧЕСКИЕ МЕТОДЫ ПРЕДСТАВЛЕНИЯ ЗНАНИЙ Предварительно остановимся на изложении некоторых понятий ...

0 комментариев


Наверх