ТЕХНИЧЕСКОЕ ЗАДАНИЕ
1 Назначение аппаратуры
Данный блок относится к классу бортовой аппаратуры и предназначен для установки в управляемый снаряд Функционально блок предназначен для свертки сигнала принимаемого бортовой РЛС
2 Технические требования
а) условия эксплуатации
- температура среды tо=30 оC;
- давление p = 1 33 × 104 Па;
б) механические нагрузки
- перегрузки в заданном диапазоне
f, Гц | 10 | 30 | 50 | 100 | 500 | 1000 |
g | 5 | 8 | 12 | 20 | 25 | 30 |
- удары u = 50 g;
в) требования по надежности
- вероятность безотказной работы P(0.033) ³ 0.8
3 Конструкционные требования
а) элементная база - микросхемы серии К176 с КМДП логикой;
б) мощность в блоке P £ 27 Вт;
в) масса блока m £ 50 кг;
г) тип корпуса - корпус по ГОСТ 17045-71;
д) тип амортизатора АД -15;
е) условия охлаждения - естественная конвекция
ПОДБОР ЭЛЕМЕНТНОЙ БАЗЫ
Поскольку проектируемый электронно-вычислительный блок является бортовой аппаратурой, то к нему предъявляются следующие требования
высокая надежность;
высокая помехозащищенность;
малая потребляемая мощность;
Наиболее полно этим требованиям удовлетворяют интегральные микросхемы на дополняющих МДП (МОП) структурах - КМДП структуры
Цифровые интегральные схемы на КМДП-транзисторах - наиболее перспективные. Мощность потребления в статическом режиме ЦИС составляет десятки нановатт, быстродействие - более 10 МГц. Среди ЦИС на МДП-транзисторах ЦИС на КМДП-транзисторах обладают наибольшей помехоустойчивостью: 40...45 % от напряжения источника питания. Отличительная особенность ЦИС на КМДП-транзисторах - также высокая эффективность использования источника питания: перепад выходного напряжения элемента почти равен напряжению источника питания. Такие ЦИС не чувствительны к изменениям напряжения питания. В элементах на КМДП-транзисторах полярности и уровни входных и выходных напряжений совпадают, что позволяет использовать непосредственные связи между элементами. Кроме того, в статическом режиме их потребляемая мощность практически равна нулю
Таким образом была выбрана серия микросхем К176 (тип логики дополняющие МОП-структуры) Конкретно были выбраны две микросхемы
К176ЛЕ5 - четыре элемента 2ИЛИ-НЕ;
К176ЛА7 - четыре элемента 2И-НЕ
Параметр | К176ЛЕ5 | К176ЛА7 |
Входной ток в состоянии “0”, Iвх0, мкА, не менее | -0 1 | -0.1 |
Входной ток в состоянии “1”, Iвх1, мкА, не более | 0 1 | 0.1 |
Выходное напряжение “0”, Uвых0, В, не более | 0 3 | 0.3 |
Выходное напряжение “1”, Uвых1, В, не менее | 8 2 | 8.2 |
Ток потребления в состоянии “0”, Iпот0, мкА, не более | 0 3 | 0.3 |
Ток потребления в состоянии “1”, Iпот1, мкА, не более | 0 3 | 0.3 |
Время задержки распространения сигнала при включении tзд р1, 0, нс, не более | 200 | 200 |
Время задержки распространения сигнала при включении tзд р0, 1, нс, не более | 200 | 200 |
Предельно допустимые электрические режимы эксплуатации
Напряжение источника питания, В | 5 - 10 В |
Нагрузочная способность на логическую микросхему, не более | 50 |
Выходной ток Iвых0 и Iвых1, мА, не более | 0 5 |
Помехоустойчивость, В | 0 9 |
РАСЧЕТ ТЕПЛОВОГО РЕЖИМА БЛОКА
Исходные данные
Размеры блока | L1=250 мм L2=180 мм L3=90 мм |
Размеры нагретой зоны | a1=234 мм a2=170 мм a3=80 мм |
Зазоры между нагретой зоной и корпусом | hн=hв=5 мм |
Площадь перфорационных отверстий | Sп=0 мм2 |
Мощность одной ИС | Pис=0,001 Вт |
Температура окружающей среды | tо=30 оC |
Тип корпуса | Дюраль |
Давление воздуха | p = 1 33 × 104 Па |
Материал ПП | Стеклотекстолит |
Толщина ПП | hпп = 2 мм |
Размеры ИС | с1 = 19 5 мм с2 = 6 мм c3 = 4 мм |
Этап 1 Определение температуры корпуса
1 Рассчитываем удельную поверхностную мощность корпуса блока qк
где P0 - мощность рассеиваемая блоком в виде теплоты;
Sк - площадь внешней поверхности блока
Для осуществления реального расчета примем P0=20 Вт, тогда
2 По графику из [1] задаемся перегревом корпуса в первом приближении D tк= 10 оС
3 Определяем коэффициент лучеиспускания для верхней a л в, боковой a л б и нижней a л н поверхностей корпуса
Так как e для всех поверхностей одинакова и равна e =0 39 то
4 Для определяющей температуры tm = t0 + 0.5 D tk = 30 + 0.5 10 =35 oC рассчитываем число Грасгофа Gr для каждой поверхности корпуса
где Lопр i - определяющий размер i-ой поверхности корпуса;
g - ускорение свободного падения;
g m - кинетическая вязкость газа, для воздуха определяется из таблицы 4 10 [1] и равна g m=16 48 × 10-6 м2/с
5 Определяем число Прандталя Pr из таблицы 4 10 [1] для определяющей температуры tm, Pr = 0.7
6 Находим режим движения газа, обтекающих каждую поверхность корпуса
5 × 106 < Grн Pr = Grв Pr = 1 831 × 0 7 × 107 = 1 282 × 107 < 2 × 107 следовательно режим ламинарный
Grб Pr = 6 832 × 0 7 × 106 = 4 782 × 106 < 5 × 106 следовательно режим переходный к ламинарному
7 Рассчитываем коэффициент теплообмена конвекцией для каждой поверхности блока a k i
где l m - теплопроводность газа, для воздуха l m определяем из таблицы 4 10 [1] l m = 0 0272 Вт/(м К);
Ni - коэффициент учитывающий ориентацию поверхности корпуса Ni = 0.7 для нижней поверхности, Ni = 1 для боковой поверхности, Ni = 1 3 для верхней поверхности
8 Определяем тепловую проводимость между поверхностью корпуса и окружающей средой s к
9 Рассчитываем перегрев корпуса блока РЭА во втором приближении D tк о
где Кк п - коэффициент зависящий от коэффициента корпуса блока Так как блок является герметичным, следовательно Кк п = 1;
Кн1 - коэффициент, учитывающий атмосферное давление окружающей среды берется из графика рис 4 12 [1], Кн1 = 1
10 Определяем ошибку расчета
Так как d =0 332 > [d ]=0.1 проводим повторный расчет скорректировав D tк= 15 оС
11 После повторного расчета получаем D tк,о= 15,8 оС, и следовательно ошибка расчета будет равна
Такая ошибка нас вполне устраивает d =0 053 < [d ]=0.1
12 Рассчитываем температуру корпуса блока
Этап 2 Определение среднеповерхностной температуры нагретой зоны
1 Вычисляем условную удельную поверхностную мощность нагретой зоны блока qз
где Pз - мощность рассеиваемая в нагретой зоне, Pз = 20 Вт.
2 По графику из [1] находим в первом приближении перегрев нагретой зоны D tз= 18 оС
3 Определяем коэффициент теплообмена излучением между нижними a з л н, верхними a з л в и боковыми a з л б поверхностями нагретой зоны и корпуса
Для начала определим приведенную степень черноты i-ой поверхности нагретой зоны e пi
где e зi и Sзi - степень черноты и площадь поверхности нагретой зоны, e зi = 0 92 (для всех поверхностей так как материал ПП одинаковай)
Так как приведенная степень черноты для разных поверхностей почти одинаковая, то мы можем принять ее равной e п = 0 405 и тогда
4 Для определяющей температуры tm = 0 5 (tк + t0 + D tk) = 0 5 (45 + 30 + 17 =46 oC и определяющего размере hi рассчитываем число Грасгофа Gr для каждой поверхности корпуса
где Lопр i - определяющий размер i-ой поверхности корпуса;
g - ускорение свободного падения;
g m - кинетическая вязкость газа, для воздуха определяется из таблицы 4 10 [1] и равна g m=17 48 × 10-6 м2/с
Определяем число Прандталя Pr из таблицы 4 10 [1] для определяющей температуры tm, Pr = 0.698
Grн Pr = Grв Pr = 213 654 × 0 698 = 149 13
Grб Pr = 875 128 × 0 698 = 610 839
... датчика, наличием нерассматриваемых источников тепла, особенностями конфигурации компонентов относительно потока воздуха от вентиляторов и др.). Это еще раз доказывает актуальность проведения экспериментальных исследований в изучении тепловых режимов устройств ЭВМ и, следовательно, создание для этих целей специализированного устройства (модуля). 7 РАЗРАБОТКА ТЕХНОЛОГИИ СБОРКИ МОДУЛЯ АЦП 7.1 ...
... источника меньше допустимого значения) и блок управления включает индикатор “Смените источник питания”. При восстановлении напряжения сети системы резервного электропитания опять переходит в режим нормальной работы. 2. Конструкторско-технологический раздел 2.1 Разработка печатной платы Печатные платы представляют собой диэлектрическую пластину с нанесенным на нее токопроводящим рисунком ( ...
... существенные случайные независимые отклонения при изготовлении штырей. Конструирование преобразователей фильтров на ПАВ. При конструировании фильтров на ПАВ необходимо решить ряд вопросов, связанных с вторичными эффектами, к числу которых в первую очередь следует отнести эффекты отражения акустических волн от штырей преобразователей, от краев звукопровода и т.д. Наиболее существенное влияние ...
... УЛПМ-901. 11 Визуальный контроль качества сборки при увеличении 2,5. ГГ6366У/012. Маршрутная карта на техпроцесс изготовления печатной платы приведена в приложении. 8 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ДИПЛОМНОГО ПРОЕКТА 8.1 Характеристика изделия «Модуль управления временными параметрами». Обоснование объема производства и расчетного периода Модуль управления временными параметрами – ...
0 комментариев