2.1.3. Сети с латеральным торможением.
Карты признаков Кохонена. Обычно в качестве входных образов в моделях ассоциативной памяти используются некоторые внутренние представления сенсорной информации, прошедшей, как считается, необходимую предобработку. Один из нейросетевых вариантов такой переработки предложен Кохоненом. Его алгоритм формирует одно- или двумерную карту "карту" признаков путем нелинейного "сплющивания" многомерного сигнального пространства. При этом предполагается, что такое отображение должно сохранять топологические отношения, существующие между входными сигналами.
Структура нейронной сети, в которой реализуется формирование карт признаков, приведена на рис. 2.1. Нейроны, имеющие сигмоидную характеристику, расположены в виде одно- и двумерного слоя слоя по аналогии со слоистым строением коры. На каждый нейрон поступают два вида связей: mij, которые интерпретируются как связи от сенсорных входов или из других областей, и w jk - латеральные связи от нейронов одного слоя, характер которых зависит от расстояния между нейронами. Функция взаимодействия нейронов одного слоя имеет вид "мексиканской шляпы" (рис. 2.2.), что соответствует некоторым нейробиологическим данным. Близко расположенные нейроны возбуждают друг друга, с увеличением расстояния возбуждение сменяется торможением, а затем опять появляются слабые возбуждающие связи, которые по-видимому, выполняют ассоциативные функции и в данной модели не используются.
Эффект наличия латеральных связей с радиусом действия порядка размеров сети проявляется в следующем. Если на каждый нейрон подать (например, через связи от сенсорных входов mij) имеющий небольшой максимум случайный сигнал Si, то в процессе релаксации сети осуществляется повышение его контрасности. В результате вокруг первоначального максимума образуется "пузырек" выходной активности нейронов (рис. 2.3.).
Рис. 2.3.
Входные сигналы полностью определяют процесс самоорганизации сети, т.е. в ней реализован алгоритм обучения без учителя. Латеральные связи w jk в модели считаются постоянными, и все адаптивные эффекты происходят только в матрице входных связей М. Подробнее процесс обучения рассмотрен в параграфе 2.2.
Теория адаптивного резонанса. Пожалуй, одна из самых развитых и продуманных с биологической точки зрения концепций нейросетевой обработки информации предложена в работах Гроссберга. Ее стержнем является модель нейронной сети и алгоритмы теории адаптивного резонанса, которая была разработана в начале 70-х годов и детализирована в 80-х.
Нейронная система теории адаптивного резонанса способна обучаться распознаванию образов различной степени сложности. Она относит входной образ к одному из классов в зависимости от того, на какой образ из запомненных образов он больше всего похож. Если входной образ не соответствует ни одному из запомненных, создается новый класс путем его запоминания. Если найден образ, с определенным "допуском" соответствующий входному, то он модифицируется так, чтобы стать еще больше похожим на входной.
2.2. Обучение нейронной сети.
Одно из важнейших свойств нейроподобной сети - способность к самоорганизации, самоадаптации с целью улучшения качества функционирования. Это достигается обучением сети, алгоритм которого задается набором обучающих правил. Обучающие правила определяют, каким образом изменяются связи в ответ на входное воздействие. Обучение основано на увеличении силы связи (веса синопса) между одновременно активными нейронами. Таким образом, часто используемые связи усиливаются, что объясняет феномен обучения путем повторения и привыкания. Математически это правило можно записать так:
(1.5)
где w ij(t) и w ij(t+1) - значение связи от i-го к j-му нейрону соответственно до и после его изменения, a - скорость обучения. В настоящее время существует множество разнообразных обучающих правил (алгоритмов обучения). Некоторые из них приведены ниже.
2.2.1. "Back propagation" (алгоритм обратного распространения ошибки).
Этот алгоритм является обобщением одной из процедур обучения простого персептрона, известной как правило Уидроу - Хоффа (или дельта-правило), и требует представления обучающей выборки. Выборка состоит из набора пар образов, между которыми надо установить соответствие, и может рассматриваться как обширное задание векторной функции, область определения которой - набор входных образов, а множество значений - набор выходов.
Перед началом обучения связям присваиваются небольшие случайные значения. Каждая итерация процедуры состоит из двух фаз. Во время первой фазы на сеть подается входной вектор (образ) путем установки в нужное состояние входных элементов. Затем входные сигналы распространяются по сети, порождая некоторый выходной вектор. Для работы алгоритма требуется, чтобы характеристика вход - выход нейроподобных элементов была неубывающей и имела ограниченную производную. Обычно для этого используют сигмоидную нелинейность вида (1.4).
Полученный выходной вектор сравнивается с требуемым. Если они совпадают, обучения не происходит. В противном случае вычисляется разница между фактическими и требуемыми выходными значениями, которая передается последовательно от выходного слоя к входному. На основании этой информации об ошибке производится модификация связей с обобщенным дельта-правилом.
2.2.2. Обучение без "воспитателя".
Обучение без "воспитателя" возможно например в сетях адаптивного резонанса (параграф 2.1.3.). Происходит сравнение входного образа с имеющимися в памяти сети шаблонами. Если нет подходящего шаблона, с которым можно было бы отождествить исследуемый образ, то создается новый шаблон, содержащий в себе этот входной образ. В дальнейшем новый шаблон используется наравне с другими.
3. Нейрокомпьютеры.
Термин "нейрокомпьютер" употребляется для обозначения всего спектра работ в рамках подхода к построению систем искусственного интеллекта, основанного на моделировании элементов, структур, взаимодействий и функций различных нервной системы. Так как в настоящее время исследования в этой области ведутся в основном на уровне моделей нейронных сетей, то понимание термина "нейрокомпьютеры" сужают, ставя знак равенства между ним и нейронными сетями.
В зависимости от способа реализации моделей нейронных сетей выделяют 4 уровня нейрокомпьютеров.
Теоретический. Работы, в которых в той или иной форме (математической, алгоритмической, словесной и т.д.) представлено описание моделей нейронных сетей.
Программный. Модели нейронных сетей, программно реализованные на обычных последовательных компьютерах.
Программно-аппаратный. Сопроцессоры для ускорения моделирования нейронных сетей.
Аппаратный. Физически реализованные модели нейронных сетей.
Специфичность нейросетевых операций, а также сверхпараллельность структуры и функционирования моделей нейронных сетей чрезвычайно замедляют их реализацию на обычных последовательных компьютерах. Потребность в выполнении большого объема исследовательских работ и быстром функционировании появившихся прикладных систем привели к появлению специализированных вычислительных устройств для эффективного моделирования нейронных сетей - нейрокомпьютеров в узком смысле слова. Такая трактовка, соответствующая уровням 2 и 3 по приведенной классификации, получила широкое распространение.
Заключение.
Рассмотренные нами нейроподобные сети могут выполнять большой круг задач.
... одном из элективных курсов. Выбор естественно-математического профиля, во-первых, определяется целью введения данного курса в школе (расширение научного мировоззрения) и, во-вторых, сложностью темы в математическом аспекте. Глава 2. Содержание обучения технологии нейронных сетей Авторы данной работы предлагают следующее содержание обучения технологии нейронных сетей. Содержание образования ...
... сети, позволяющая реализовать автоматическое изменение числа нейронов в зависимости от потребностей задачи, позволяет не только исследовать, но и контролировать процесс воспитания психологической интуиции искусственных нейронных сетей. - Впервые применена выборочная константа Липшица для оценки необходимой для решения конкретной задачи структуры нейронной сети. Практическая значимость ...
... информации; • единый и эффективный принцип обучения; • надежность функционирования; • способность решать неформализованные задачи. 3. Моделирование динамики яркостной температуры методом инвариантных погружений и нейронных сетей 3.1 Получение экспериментальных данных на производственной практике Одним из типов исследований методом радиометрического дистанционного зондирования земли ...
... МП к некритическому экстраполированию результата считается его слабостью. Сети РБФ более чувствительны к «проклятию размерности» и испытывают значительные трудности, когда число входов велико. 5. МОДЕЛИРОВАНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ПРОГНОЗИРОВАНИЯ СТОИМОСТИ НЕДВИЖИМОСТИ 5.1 Особенности нейросетевого прогнозирования в задаче оценки стоимости недвижимости Использование нейронных сетей можно ...
0 комментариев