1.    Анализируется платежная матрица на предмет исключения заведомо невыгодных и дублирующих стратегий.

Проверяется наличие седловой точки по условию (1.21). Если решение в чистых стратегиях отсутствует, то ищется решение в смешанных стратегиях с помощью методов линейного программирования или методом Монте-Карло.

Пример 1.4. Обоснование стратегии эксплуатации

Предположим, что техническая система (агрегат) состоит из 5 блоков, отказ одного из которых ведет к отказу всей системы. Для предупреждения простоя системы можно провести перед началом ее работы проверку и замену неисправного блока. Если проверен не тот блок, то система простаивает, что приводит к убытку Ri (в таблице), который существенно превышает расходы на профилактику и замену (т.е. Rij = 0). Требуется выбрать оптимальную стратегию из условия минимума убытка.

Пусть матрица расходов в зависимости от стратегий имеет вид:

Отказ блока (стратегии природы)
Проверка 1 2 3 4 5 max строки
и 1 8 2

9

5 6

9

замена 2 6 5 17 18 7 18
(стра- 3 7 3 14 10 8 14
тегии 4 4 6 16 9 19 19
эксплуа- 5 12 4 15 8 10 15
тации) min столбца 6 2

9

5 6

Ответ: Имеется седловая точка - необходимо во всех случаях проверять первый блок.

Пример 1.5. Зимняя эксплуатация лесовозной дороги

Предположим, что при заготовке леса зимой стоит выбор делать или не делать предварительную расчистку дороги. При этом известны предполагаемые высоты снежного покрова и матрица доходов при применении той или иной стратегии. В данном случае можно реализовать себя как игрока A, а природу, как игроке B:

B
20 мм 40 мм 60 мм 100 мм
A не делать 2 2 3 -1
делать 4 3 2 6

Решение: Имеем игру 2x4. Эта игра не имеет седловой точки. Ожидаемые выигрыши игрока A, соответствующие чистым стратегиям B представлены в таблице

Чистые стратегии B Ожидаемые выигрыши A

1

2

3

4

-2x1 + 4

-x1 +3

x1 + 2

-7x1 + 6

Далее оптимальное решение - максимин находится графоаналитическим методом. Значение игры в данном случае равно 5/2.

Литература:

Андреев В.Н., Герасимов Ю.Ю. Принятие оптимальных решений: Теория и применение в лесном деле. Йоэнсуу: Из-во ун-та Йоэнсуу, 1999. 200 с. Беллман Р., Калаба Р. Динамическое программирование и современная теория управления. М.: Наука, 1969. 120 с. Вентцель Е.С. Элементы динамического программирования. М.: Наука, 1964. 176 с. Вентцель Е.С. Исследование операций: задачи, принципы, методология. М.: Наука, 1988. Юдин Д.Б. Задачи и методы стохастического программирования. М.: Сов. радио, 1979. 392 с. Davis L.S., Johnson K.N. Forest management. New York: McGraw-Hill Book Company, 1987. 790 p. Моисеев Н.Н., Математические методы системного анализа М. Наука 1981 487 с. http://www.petrsu.ru/Faculties/Forest/courses/decision/decis_a.htm
Информация о работе «Принятие оптимальных решений в условиях неопределенности»
Раздел: Экономика
Количество знаков с пробелами: 45054
Количество таблиц: 11
Количество изображений: 3

Похожие работы

Скачать
37291
1
2

... сумм расходов, продажи, кредита; §   самострахование за счет создания натуральных и денежных резервных (страховых) фондов; §   страхование. Таким образом, в процессе разработки и принятия управленческих решений в условиях неопределенности и риска менеджер сталкивается с необходимостью проведения анализа существующих рисков, а также осуществления мероприятий, связанных с избежанием, удержанием, ...

Скачать
33881
0
0

... сумм расходов,продажи, кредита; ·  самострахование за счет создания натуральных и денежных резервных (страховых) фондов; ·  страхование. Таким образом, в процессе разработки и принятия управленческих решений в условиях неопределенности и риска менеджер сталкивается с необходимостью проведения анализа существующих рисков, а также осуществления мероприятий, связанных с избежанием, удержанием, ...

Скачать
91004
1
5

... вопросы в свою очередь связаны с принятием определенных решений, однако в настоящее время они в значительной мере определяются вкусом, склонностями и личными качествами.1.2.2. Сущность процесса принятия управленческого решения Понятие "решение" в научной литературе трактуется по-разному. Оно понимается и как процесс, и как акт выбора, и как результат выбора. Решение как процесс характеризуется ...

Скачать
22563
15
13

... = -1 Итак, мы имеем i1 = 3, i2 = 12, i3 = 17.5, i4 = -1. Теперь из чисел 3, 12, 17.5, -1 берем максимальное. Это — 17.5. Значит, правило Гурвица рекомендует 3-е решение. Принятие решений в условиях частичной неопределенности. Предположим, что в рассматриваемой схеме известны вероятности pj того, что реальная ситуация развивается по варианту j. Именно такое положение называется частичной ...

0 комментариев


Наверх