4.2.1. Определяется расход поваренной соли NaCl на 1

регенерацииNa-кат. фильтра [1,прил.7,п21]:

PNa = (fNa*Hk*ENa раб.*ас) / 1000 кг (26)

PNa = (1.76*2*280.5*100) / 1000 = 98.7 кг

Определяется суточный весовой расход NaCl для регенерации

всех рабочих Na- кат. фильтров:

РNaсут = PNa*nNa*npNa кг/сут (27)

РNaсут = 98.7*2*2 = 394.8 кг/сут < 500 кг/сут

При суточном расходе NaCl до 500 кг/сут устраивают сухое

хранение соли на складе с последующим приготовлением

8% регенерационного раствора.

Принимается Сухое хранение.

 

Определяется месячный весовой расход поваренной соли для регенерации Na-кат.ф-ов.

PNaмес = 30*PNaсут , т (28)

PNaмес = 30*394.8 = 12 т

 

4.2.2. Определяется площадь склада для сухого месячного

хранения соли из условия, что высота NaCl не должна

превышать 2.5 метра.

 

FNacyх.хран. = PNaмес / r Na*25 , м2 (29)

FNacyх.хран. = 6 м2

Принимается склад сухого хранения размерами:

H = 2.5

B = 2 6 м

L = 3

Определяется объем напорного солерастворителя из расчета расхода соли на 1 регенерацию фильтра.

Принимается напорный солерастворитель со след.

техническими характеристиками по [6]:

полезная емкость (100 кг)

объем (0.4 м3)

диаметр (45 мм)

Определяется объем бака для 8% регенерационного раствора NaCl на

одну регенерацию Na-кат.ф.

W8% = (WH.C. * 26%) / 8% = 1.3 м3 (30)

 

 

 

Принимается бак 8% регенерац. Раствора NaCl размерами:

L = 1.3

B = 1 1.3 м3

H = 1

 

 

4.2.3. Для перекачки раствора NaCl устанавливаются

2 насоса:

- один рабочий,

- один резервный.

Характеристики насоса:

Напор: HNa = 20 м

Подача: QNa = VNa*fNa м3 /час (32)

Где VNa – скорость движения р-ра NaCl

через катионитную загрузку,

fNa – S одного кат. ф-ра.

 

QNa = 4*1.76 = 7 м3 /час

 

4.2.4. Перед регенерацией H-Na – кат. ф-ов необходимо проводить взрыхление загрузки для более эффективной регенерации.

 

Wб.взр. = (2*Wвзр.*f*60*tвр.) / 1000 м3 (33)

Где Wвзр. – интенсивность подачи воды для взрыхления катионита

Где Wвзр. = 4 л/с на 1м2

f = 1.76 (наибольшая S катион. Ф-ов)

tвр. – продолжит. взрыхления катионита

(20-30мин.)

 

Wб.взр. = (2*4*1.76*60*25) / 1000 = 21.2 м3

L = 7

B = 2 22.4 > 22 м3

H = 1.6

 

 

4.3. Устройство для удаления из воды углекислоты.

 

Для удаления CO2 из Н-Na-кат. Воды предусматривается дегазатор

С насадкой из колец Рашега – кислотоупорных керамических

[1.прил.№7.,п.34]

4.3.1. Определяется содержание CO2 или двуокиси углерода в воде подаваемой на дегазатор.

(CO2 )св. = (CO2 )о + 44*Що , г/м3 (34)

где (CO2 )о- содержание CO2 в исходной воде.

(CO2 )о = (CO2 )**b

(CO2 )*- содержание углерода в воде в зависимости от pH

рН = 6.8…7.5

(CO2 )* = 80 г/м3

b = 0.5

(CO2 )о = 40 г/м3

(CO2 )св. = 40+44*5.1 = 264.4 г/м3

По полученному значению содержание CO2 в воде

Определяется высота слоя насадки hн , м необходимая для понижения

Содержания CO2 в катионированной воде [1.прил.№7.,п.34,табл.5]

Для (CO2 )св. = 264.4 г/м3 hн =5.7

 

 

 

 

Пленочный дегазатор представляет собой колонну загруженную

насадкой из керамических кислотоупорных колец Рашига,

по которым вода стекает тонкой пленкой, на встречу потоку

воды поток воздуха нагнетаемой вентилятором.

 

4.3.2. Определяется S поперечного сечения дегазатора.

из условия плотности орошения согласно

[1.прил.№7.,п.34,табл.5].

Плотность орошения при керамической насадке r = 60 м3/г на 1м2

Fg = qпол. / r , м2, (35)

qпол. – полезная производительность H-Na-кат.ф.

Fg = 45.8/60 = 0.76 м2

Определяется объем слоя насадки:

Vн = Fg * hн , м3 (36)

Vн = 0.76*5.7 = 4.3 м3

Опред. Диаметр дегазатора:

D = Ц (4* Fg )/p = 0.96 м (37)

Характеристика насадки колец Рашига:

Размеры эл-та насадки: 25*25*4 мм

Кол-во эл-ов в 1 м3 : 55 тыс.

Удельная пов-ть насадки: 204 м2/м3

Вес насадки: 532 кг

 

 

 

 

 

Вентилятор дегазатора должен обеспечивать подачу воздуха из расчета

15 м3 воздуха на 1 м3 воды по [1.прил.№7.,п.34], тогда производительность вентилятора определяется:

Qвент. = qпол. * 15 , м3/час (38)

Qвент. = 45.8*15 = 687 м3/час

Напор вентилятора определяется с учетом сопротивления в

керамической насадке:

Sн = 30 мм водяного столба на 1 м.

Прочие сопротивления принимаются по [1.прил.№7.,п.34]

Sпр = 30…40 мм вод. Столба.

Напор: Hвент. = Sнас. * hн + Sпрочие (39)

Hвент. = 30*5.7 + 35 = 206 мм

 

 

 

5.0. Определение расходов воды.

Определение расходов воды слагается из потребления воды на

следующие процессы:

взрыхление кат. ф-ра перед регенерацией (Q1)

приготовление регенерац. р-ов к-ты и соли (Q2)

отмывка катионита после регенерации (Q3)

На все технологич. проц. Используют исходную неумягченную воду.

Qтех. = Q1 + Q2 + Q3, м3/сут (40)

 

 

 

 

 

 

5.1. Определяется расход воды на взрыхление катионита ф.

перед регенерацией.

Q1 = (Wвзр. * f * nн * nрн * nNa *npNa * tвзр. * 60) /1000 (41)

Q1 = (4 * 1.76 * 2 * 2 * 2 * 2 * 25 * 60) / 1000 = 169 м3/сут

 

 

5.2. Определяется расход воды на приготовление

регенерационных растворов кислоты и соли.

Q2 = q1% * nн * nнр + (q26% + q8%)*nNa * nрNa, м3/сут (42)

q1% = 7.3 м3/сут

q26% = 0

q8% = (Wнс * 26%) / 8% * 1000 = 1.3 м3/сут

Q2 = 7.3 * 2 * 2 + (0 + 1.3) * 2 * 2 = 34.4 м3/сут

 

5.3. Определяется расход воды на отмывку катионита после регенерации.

Q3 = Wотм. * f * Hк * nн * nнр * nNa * nNaр м3/сут (43)

Wотм. – уд. расход отмывочной воды приним. по [1.прил.№7.,п.21]:

Wотм. = 5…6 м3 на 1м3 катионита.

Q3 = 5 * 1.76 * 2 * 2 * 2 * 2 * 2 = 281.6 м3/сут

 

Qтех. = Q1+Q2+Q3 = 485 м3/сут

 

 

 

 

6. Расчет диаметров трубопроводов

станции умягчения воды.

 

Определения диаметров трубопроводов дла транспортировки воды,

растворов кислоты и соли рекомендуется производить из величин

соответствующих расходов и скорости движения жидкости,

принимается в пределах 1…1,5 м/сек.

Расчет ведется с использованием литеатуры [4] и сводится

в таблицу:

Назначение

Трубопроводов

Расход,

л/с

Скорость,

м/с

Диаметр,

мм

Материал

Трубопровод подачи

исходной воды на

станцию умягчения.

18.8

1.04

150

Чугун

2. Трубопровод подачи и

отвода воды для

взрыхления.

1.9

1.44

50

Полиэтилен

3. Трубопровод подачи и

отвода 1% регенерац. р-ра

серной кислоты.

0.34

1.07

25

Полиэтилен

4. Трубопровод подачи и

отвода 8% регенера-

ционного р-ра соли.

0.06

1.19

12

Полиэтилен

5. Трубопровод подачи 100%

кислоты.

0.002

0.47

6

Сталь

6. Трубопровод отвода

умягченной воды.

12.7

1

125

Чугун

Для перекачки р-ов кислот и щелочей применяются трубы из нержавеющей стали или полиэтилена .

Для перекачки концентрированных растворов кислот и щелочей

(более 80%) используются трубы из углеродистой стали или пластмассовые.

Для перекачки воды используются трубы чугунные, асбесто-цеме-

нтные и железобетонные.

 

 

7. Компоновка основных и вспомогательных помещений станции умягчения воды.

К основному помещению станции относится главный зал

размещения H-Na-кат. ф.

Зал имеет высоту на 2-2.5 м выше полной высоты фильтров.

В плане фильтры распологаются в 2 ряда.

Расстояние м/у фильтрами не < 1 метра для удодного прохода

и обслуживания оборудования.

К вспомогательным помещениям относятся:

Помещения для складирования и приготовления регенерац.

р-ов кислоты и соли.

Помещения как правило одноэтажные с заглубленными

участками для размещения емкостей и насосного оборудования.

Основным компоновочным требованием явл. одинаковая

отметка пола платформы для выгрузки соли и отметки

верха баков. Помещение кислотного хоз-ва должно быть

изолировано от солевого и иметь не менее 2-х выходов.

Цистерны для хранения к-ты рекомендунтся распологать

в отапливаемом помещении во избежание ее замерзания.

Помещения лабораторий, мастерских, административного

и рабочего персонала.

Помещения поектируются в соответствии с требованиями

жилой застройки.

Дегазатор следует размещать в непосредственной близости

от H-Na-кат.ф. в главном зале.

Основные и вспомогательные помещения станции рекомендуется

блокировать, что сокращает протяженность трубопроводов и

повышает удобство в эксплуатации.

 

 

 

 

 

 

 


Информация о работе «Умягчение воды методом ионного обмена»
Раздел: Биология и химия
Количество знаков с пробелами: 18888
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
31625
5
5

... свойств ионитов обычно определяют их динамическую и иногда полную (общую) обменную емкость (статическую).Основные требования к ионитам, используемым для очистки воды: высокая обменная емкость, высокая скорость ионного обмена, достаточная устойчивость по отношению к кислотам, щелочам, окислителям и восстановителям, нерастворимость в воде, органических растворителях и растворах электролитов и ...

Скачать
49793
2
18

... кислоты для регенерации катионита, г/г-экв. Процесс регенерации Н-катионитовых фильтров описывается следующей реакцией:   Методы известково-катионитовый и частичного катионирования   Известково-катионитовый метод умягчения воды (рис. 20.17) является смешанным способом и относятся к реагентно-катионитовому. Карбонатную жесткость исходной воды устраняют известкованием, затем вода поступает ...

Скачать
15391
0
3

... n=1...3 — число регенераций фильтра в сутки; Eп=500 — полная обменная емкость анионита по ионам НСО3- и S042-, г-экв/м3. На установках производительностью от 5 до 50 м3/ч натрий—хлор-ионитовый метод умягчения воды имеет ряд преимуществ по сравнению с водород—натрий-катионитовым методом: расходуется только один реагент — поваренная соль, отпадает необходимость в кислотном хозяйстве, не требуется ...

Скачать
19417
0
1

... заборе воды из поверхностных источников. Несмотря на свою высокую эффективность, озон используют редко из-за высокой стоимости и сложности эксплуатации озонаторных установок. Рис. 17.8. Установка деманганации воды озонированием. 1 — подача озона, 2 — камера озонирования, 3 — ступенчатый каскадный аэратор, 4 — поглотитель остаточного озона, 5 — подача исходной воды, 6 — двуслойный фильтр, ...

0 комментариев


Наверх