3.4. ТМ черных металлов

ТМ этой группы, как и ТМ цветных и редких металлов формируются при добыче, обогащении и переработке продуктов обогащения коренных руд чёрных металлов (Fe, Ti, Mn, Cr). Они так же, как правило, относятся к месторождениям смешенного типа, т.е. пригодны для доизвлечения различных металлов и для получения стройматериалов.

Для месторождений Урала этой группы наблюдается аналогичное соотношение запасов для разных их типов:

ТМ вскрышных и скальных пород и некондиционных руд - >5 000млн. т;

ТМ хвостов обогащения - ~900 млн. т;

ТМ шлаков металлургических комбинатов - ~200 млн. т.

Наибольший интерес среди ТМ чёрных металлов вызывают в последнее время хвосты мокрой магнитной сепарации титаномагнетитовых руд Качканарского ГОК’а (Урал). Хвостохранилище занимает площадь 2000´200 м=40 га. В среднем в него ежегодно поступает около 34 млн.т хвостов. Материал их достаточно однороден, с преобладающим фракционным составом 1-4 мм. Распределение металла по поверхности хвостохранилища равномерное. Как следствие однородности состава шламов в них отмечаются стабильные содержания одного из редких металлов–скандия (CSc»130 г/т), представляющего промышленный интерес.

ТМ металлургических предприятий представляют довольно сложные объекты. Строение подобных ТМ рассмотрим на примере ТМ Челябинского электрометаллургического комбината (АО «ЧЭМК»).

Шлаковые отвалы ЧЭМК формируются с начала ферросплавного производства в 1931г. и продолжают функционировать по настоящее время. Они имеют в плане близкую к изометрической форму плоского типа (соотношение площади верхней поверхности и нижнего основания меньше двух). Площадь отвала около 38 га. Мощность тела отвала 16-31 м, средняя её величина – 22,55 м. Плотность материала – 2,5 т/м3.

Вывалка шлаков и отходов различного состава производилась хаотически, без соблюдения системы складирования, поэтому строение отвала сложное. Большая часть его поверхности покрыта пылями различных производств и саморассыпающихся шлаков, которые впоследствии проходят процесс литификации (слёживания), превращаясь в сцементированные тонкообломочные породы.

В отвале содержится около 653 тыс.т марганца. Основное перспективное направление переработки – использование в качестве строительного материала с предварительным извлечением металлических фаз. Характерными стройматериалами, которые могут быть получены из шлаков чёрной металлургии, являются:

гранулированные шлаки;

шлаковая пемза как заполнитель бетона;

шлаковата;

литой шлаковый щебень;

шлаковое литьё (брусчатка, плитки, бордюрный камень и пр.);

стеклокерамические изделия;

вяжущие добавки в цемент;

минеральные добавки для улучшения почв.

4. Методика и техника геолого-экономической оценки ТМ

4.1. Основные этапы исследования ТМ

Исследования ТМ и вовлечение их в эксплуатацию представляет собой комплексную проблему, которая может быть решена только совместными усилиями геологов, геофизиков, горняков, обогатителей и экологов. Методика исследований ТМ включает ряд этапов:

Рекогносцировочное геолого-геофизическое обследование ТМ. Оно выполняется путём изучения горно-геологической документации отработки коренных месторождений, осмотра техногенных образований на местах и составления схемы их залегания. На основании выполнения этих работ оценивается:

минералогический и петрофизический состав залежей ТМ и их физические свойства (плотность, электропроводность и т.д.);

ожидаемое содержание полезных и попутных компонент;

гранулометрический состав;

площадь и мощность залежей ТМ, их состояние, сроки складирования и т.д.

Первый этап работ заканчивается заключением о целесообразности дальнейшего изучения ТМ с целью вовлечения его в переработку, если существует потребность в том или ином продукте, полученном из техногенного сырья.

При этом оценка ТМ должна быть технолого-эколого-экономической, так как экологический аспект их разработки, наряду с сырьевым, является важнейшим.

Совокупность таких заключений может служить основой для составления централизованной картотеки, кадастра или банка данных по ТМ России.

Геолого-геофизическая съёмка поверхности отложений ТМ. Информация о ТМ, полученная на первом этапе исследований, требует уточнения. Многие ТМ существуют от нескольких десятков до 100 и более лет. В течение этого времени интенсивно шли процессы выветривания, окисления и выщелачивания, в результате которых произошло перераспределение элементов, изменение минералогического и вещественного состава техногенных отложений, вынос элементов и образование ореолов рассеяния. Эти изменения наиболее существенны для отходов добычи и обогащения сульфидных руд, которые при окислении и выщелачивании быстро разрушаются и переходят в окисленные минералогические формы, требующие при утилизации создания особых технологий извлечения полезных компонент.

Основным средством исследования ТМ на втором этапе являются ядерногеофизические методы, такие как рентгенофлуоресцентный (РФМ), нейтронноактивационный (НАМ), гамма-гамма (ГГМ) и др., обеспечивающие геолого-технологическое картирование и выявление наиболее перспективных для разработки участков.

Второй этап исследований ТМ начинается рентгенорадиометрической съёмкой, когда это возможно, или отбором проб с поверхности отложений по разведочным линиям с максимальным расстоянием между ними для однородных отвалов 100 м, а между пунктами опробования по линии – 10-20 м. Отбор проб по поверхности рыхлых отложений проводится горстьевым способом или способом вычерпывания. Крупные глыбы шлаков, горных пород, некондиционных руд и других образований опробуются штуфным способом. Проба представляет собой образец (штуф) или сколки, отобранные равномерно с опробуемой поверхности. В случае неоднородности строения объекта исследований проводится опробование каждой разновидности.

Отобранные пробы подвергаются сначала полуколичественному спектральному анализу с целью выявления широкого круга элементов в исследуемом материале. Количественный анализ осуществляется рентгенорадиометрическим или нейтронно-активационным методом в зависимости от минимальных содержаний (Cmin) и типа (порядкового атомного номера Z) определяемых элементов, представляющих практический интерес. Для РФМ - Сmin³(10-3-10-2)%, Z>20; а для НАМ - Сmin³5·10-5%; Z – практически любой.

При исследовании многих типов ТМ возможна рентгенофлуоресцентная съёмка (РФС) по поверхности отложений без отбора проб. Например, РФС с успехом применяется для картирования поверхности хвостохранилищ оловорудных, полиметаллических и некоторых других типов месторождений.

В процессе съёмки определяется содержания основных полезных компонент – Cu, Zn, Pb, Sn и др., сопутствующих– Fe, As и др., редких и рассеянных элементов – Ag, Cd, Re, Ga и др., которые имеют промышленное значение и могут быть извлечены при переработке техногенных руд, а также Sr, Ba, Sb, Zr, Rb, Ca, S, P, которые определяют технологический тип руды и влияют на извлечение полезных компонент. Такая многоэлементная съёмка может быть выполнена в настоящее время ретгенофлуоресцентным методом с портативной или переносной аппаратурой на пропорциональных, полупроводниковых или кристалл-дифракционных детекторах (АР-104, Дукат, Спетроскан и др.). По результатам съёмки выделяются перспективные для отработки участки ТМ.

Второй этап исследований включает также изучение физических свойств и минералогическое и петрофизическое изучение материалов проб и образцов. Результаты определения вещественного состава, минералого-петрографической и петрофизической характеристик техногенных отложений оформляются в виде геолого-технологической карты или плана.

Разбуривание перспективных участков. Основная его задача – заверка результатов поверхностной съёмки и получение данных о пространственном распределении оруденения в техногенных отложениях. На основе этих сведений осуществляется прогнозный подсчёт запасов полезных компонент, разработка плана отработки ТМ с учётом технологических типов оруденения и составление геологической карты и разрезов.

Разбуривание перспективных участков осуществляется по густой, разведочной сети – 10´10 м, а для неперспективных участков по более редкой, поисковой, сети – 50´50 м с экспресс-анализом шламовых проб рентгенофлуоресцентным методом, на тот же круг элементов, что и при съёмке.

Результаты исследований по этапам 1-3 уже достаточны для того чтобы начать разработку ТМ. Однако, для более эффективного использования техногенного сырья целесообразно проведение дополнительных исследований для уточнения технологии его переработки. С этой целью осуществляются исследования 4-го этапа.

Изучение малой технологической пробы. Оно направлено на решение технологических вопросов и составление технико-экономического обоснования (ТЭО) промышленного освоения ТМ с разработкой кондиций.

Малая технологическая проба массой от 50 до 100 т отбирается с перспективных участков. Изучение такой пробы позволяет:

оценить обогатимость руд, используя полученные данные по её гранулометрическому составу, распределению полезных компонент по классам крупности, контрастности оруденения, определённой химическим или радиометрическим методом, по вещественному и минералогическому составу, по степени окисленности рудных минералов и опытной флотации или гравитации;

оценить возможность и перспективы радиометрической порционной сортировки транспортных емкостей (вагонеток, самосвалов, транспортёров и т.д.) и покусковой сепарации при отработке техногенных отложений;

разработать рациональную технологическую схему извлечения полезных компонент для данного ТМ с экономическим обоснованием и проектом технологической линии для отработки ТМ.

Общая структурная схема переработки руд с применением радиометрической сортировки и сепарации руд показана на рис.3, но для каждого конкретного месторождения она должна быть уточнена и конкретизирована.


Рис.3. Общая принципиальная схема технологии переработки коренных и техногенных руд с применением предварительной концентрации на основе радиометрической сортировки и сепарации.


Информация о работе «Техногенные месторождения»
Раздел: География
Количество знаков с пробелами: 97957
Количество таблиц: 18
Количество изображений: 9

Похожие работы

Скачать
28000
1
5

... , редких и благородных), то из-за низкого их содержания количество техногенных отходов практически не уменьшается. Глава 2. УСТАНОВКА ДЛЯ СВЕРХКРИТИЧЕСКОЙ ФЛЮИДНОЙ ЭКСТРАКЦИИ КОМПЛЕКСОВ УРАНА ИЗ ТЕХНОГЕННЫХ МЕСТОРОЖДЕНИЙ Украина обеспечена собственными урановыми ресурсами лишь на 30 %. В то же время в стране имеются техногенные месторождения с высокой концентрацией радиоактивных и токсичных ...

Скачать
5942
0
0

... и 500млн.т отходов обогащения железных руд Криворожского бассейна могут дать товарной продукции на 6млр.долларов. Эти, а также другие данные показывают настоятельную необходимость изучения и утилизации техногенных месторождений Украины и, особенно, Донбасса. За 200 лет промышленной добычи каменных углей в Донбассе и их переработки накоплено громадное количество отходов: на каждого жителя этого ...

Скачать
67189
12
35

... кристаллах кианита есть редкие простые формы, создающие собственные сектора роста, физически и химически потенциально отличные от секторов роста распространенных форм.7.2 Типы кианитаВ техногенных россыпях на Андрее-Юльевском участке кианит встречается голубой, голубовато-серый, синий, коричневатый и бесцветный, в зернах типичного досковидного облика до 1-5 мм, с преобладанием граней пинакоидов ( ...

Скачать
30933
0
0

... юго-востока Украины (Каменные Могилы, Хомутовская степь), принятых за эталон доантропогенных почв Донбасса, составляет 0,037мг/кг. Среднее значение техногенного фона в почвах Донецко-Макеевского района – 0,165мг/кг. Во многих случаях в г.Донецке выявлены значительно большие её концентрации вплоть до 9,0мг/кг (рис.3а). Техногенные аномалии ртути различной контрастности покрывают около 90% почв г. ...

0 комментариев


Наверх