1 Исходные данные для проектирования
Площадка для строительства 10 этажного 180-квартирного жилого дома находится в западной части города Тихорецка.
Район строительства относится по СНиП 23-01-99 к I снеговому и II ветровому климатическому району, характеризующемуся отрицательными температурами в зимнее время и жарким летом с большой интенсивностью солнечной радиации.
Проект разработан для строительства в регионе со следующими климатическими и инженерными характеристиками:
- расчетная зимняя температура наружного воздуха - -20 ºС;
- расчетная нагрузка снегового покрова для I-го района – 0,8 кПа,
- расчетное значение ветрового напора для II-го района – 0,42 кПа;
- сейсмичность площадки строительства – 7 баллов;
Геолого-литологическое строение участка до глубины 20 м следующее: под лёссовой делювиально-эоловой толщей суглинков залегают аллювиальные грунты, представленные пачкой песчано-глинистых грунтов, супесей, песков, глин.
На участке развиты просадочные грунты. Мощность просадочных грунтов 4,5 – 6 м, тип просадочности – 1. Начальное просадочное давление грунтов под подошвой фундаментов равно 189 кПа. Глубина сезонного промерзания грунтов – 0,8 м; (СНиП 2.0101-82).
2 Генеральный план
Площадь участка составляет 13,6 тыс.м2, в том числе под строительство здания 1,9 тыс.м2, для благоустройства – 11,7 тыс.м2.
Участок имеет форму прямоугольника с уступами и граничит с востока – 10 этажным жилым домом, с юга – 9 этажным и 5этажным жилыми домами, с запада – 5 этажным жилым домом.
Рельеф площадки – пологий склон с уклоном в западном направлении.
На участке, выделенном для благоустройства, запроектированы тротуары, площадки для отдыха, газоны, стоянки для машин.
Инженерные сети размещаются вдоль проездов прямолинейно и параллельно линиям застройки. Водопровод, канализация, кабели проложены в траншеях, тепловые сети в подземных каналах.
Отвод поверхностных вод обеспечен закрытым способом в ливневую канализацию. Для отвода запроектированы железобетонные лотки с покрытием из решеток.
Генеральный план размещения здания на участке выполнен в целом в границах, выделенных для проектирования с учетом увязки с примыкающей застройкой и конфигурацией проектируемого корпуса.
Главным фасадом здание ориентировано на ул. Красную.
Таблица 1.1. Основные показатели по генплану.
№ п/п | Наименование показателей | Ед. изм | Показатели |
1 | Площадь территории | м² | 13590 |
2 | Площадь застройки зданиями и сооружениями | м² | 1912 |
3 | Плотность застройки зданиями и сооружениями | % | 14 |
4 | Площадь дорог, проездов, площадок, отмосток | м² | 5436 |
5 | Процент использования территории | % | 54 |
6 | Площадь озеленения | м² | 6251 |
7 | Процент озеленения | % | 46 |
3 ТЕХНИКО-ЭКОНОМИЧЕСКОЕ СРАВНЕНИЕ ВАРИАНТОВ КОНСТРУКЦИЙ И ВЫБОР ОСНОВНОГО ВАРИАНТА
Исходные данные. Фундаменты 10-этажного 5-секционного жилого дома на 180 квартир при несущих лесовых грунтах, может быть решено в трех вариантах.
1. Фундамент – сплошная монолитная ж. б. плита высотой 65 см, стены подвыла -стеновые фундаментальные блоки.
2. Свайный фундамент, длина свай 12 м, стены подвала – монолитные железобетонные.
3. Ленточный фундамент, стены подвала – стеновые фундаментальные блоки.
Сравниваются фундаменты одной блок-секции в осях 7-8.
Решение задачи.
Определяем объемы работ, расходы строительных материалов, трудоемкости и сметной себестоимости конструктивных решений предложенных вариантов. Результаты расчетов сведены в таблице.
Из таблицы видно, что наибольшую трудоемкость осуществления конструктивного решения имеет второй вариант. Он принимается за базовый при проведении сравнения.
Определяем продолжительность возведения конструкций по вариантам. Принимаем сопоставимые условия проведения работ: одинаковое количество рабочих бригад - 1, число рабочих в бригаде - 5, двусменная работа. Тогда, продолжительность осуществления конструктивных решений по вариантам составит:
Таблица 3.1.
Ведомость объемов работ
№№ п/п | Наименование конструктивных элементов и видов работ | Ед. изм. | К-во шт. | Расход | |||||||
бетона, м3 | раствора, м3 | стали, м3 | гравия, м3 | ||||||||
на 1 эл-т | всего | на 1 эл-т | всего | на 1 эл-т | всего | на 1 эл-т | всего | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 вариант конструктивного решения |
| ||||||||||
1 | Разработка грунта 1 группы экскаватором с ковшом V=2,5 м3 | 1000 м3 | 1,25 | ||||||||
2 | Устройство бетонной подготовки | м3 | 60,18 | ||||||||
3 | Устройство фундаментной плоской плиты ж/б | м3 | 389,6 | ||||||||
4 | Укладка блоков фундамента при глубине котлована до 4 м и массе конструкций до 0,5 т до 1,5 т | шт. шт. | 35 319 | ||||||||
5 | Устройство антисейсмического пояса в опалубке | м3 | 32,13 | ||||||||
6 | Устройство горизонтальной гидроизоляции из слоя цементного раствора | 100 м2 | 10,0 | 2,04 | 10,0 | ||||||
2 вариант конструктивного решения |
| ||||||||||
1 | Разработка грунта 1 группы экскаватором с ковшом V=2,5 м3 | 1000 м3 | 0,983 | ||||||||
2 | Погружение дизель-молотом на экскаваторе ж/б свай длиной до 12м в грунты 1 группы | м3 свай | 186 | ||||||||
3 | Устройство монолитного ж/б ростверка | м3 | 55,18 | ||||||||
4 | Устройство ж/б стен подвала высотой до 3 м, толщиной 500 мм | м3 | 221,6 | ||||||||
5 | Устройство подстилающего слоя под полы подвала | м3 | 31,62 | ||||||||
6 | Устройство полов бетонных толщиной 80 мм | 100 м2 | 3,1 | ||||||||
7 | Устройство горизонтальной гидроизоляции из слоя цементного раствора | 100 м2 | 4,9 | ||||||||
3 вариант конструктивного решения |
| ||||||||||
1 | Разработка грунта 1 группы экскаватором с ковшом V=2,5 м3 | 1000 м3 | 2,33 | ||||||||
2 | Устройство гравийной подушки | 100 м3 | 14,2 | ||||||||
3 | Укладка плит ленточного фундамента при глубине котлована до 4 м и массе конструкций до 0,5 т до 1,5 т | шт. шт. | 35 319 | ||||||||
5 | Устройство антисейсмического пояса в опалубке | м3 | 32,13 | ||||||||
6 | Устройство подстилающего слоя под полы подвала | м3 | 31,62 | ||||||||
7 | Устройство полов бетонных толщиной 80 мм | 100м2 | 3,1 | ||||||||
8 | Устройство горизонтальной гидроизоляции из слоя цементного раствора | 100м2 | 4,9 |
4 АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ
4.1 Описание объемно-планировочного решения, состав помещений
10-этажный жилой дом представляет собой композицию из 5-ти блок-секций. Для 5 блок-секций разработано 2 принципиальных типа блок-секций.
4 блок-секции первого типа на 40 квартир в осях 1-6 имеют набор квартир с 1-го этажа 2-2-4-3. Второй тип блок-секций на 40 квартир в осях 7-8 имеет набор квартир с 1‑го этажа 2-2-5-4.
Все запроектированные квартиры не имеют проходных комнат. Кухни площадью 8,5 м2 - 10 м2. Здание имеет подвал с сараем для квартир и теплый чердак.
Выход из квартир осуществляется на одну обычную лестничную клетку, при имеющихся выходах из каждой квартиры на балкон с глухим простенком от торца балкона до проема не менее 1,2 м.
Для тепло- и звукоизоляции перекрытий используют керамзитовый гравий с γ = 800 кг/м2. Перегородки из кирпича глиняного обыкновенного. Полы в жилых комнатах первого этажа паркетные, на остальных этажах из линолеума.
Кровля рулонная с внутренним водостоком. В санузлах и ванных полы из керамической плитки.
Для отделки стен жилых комнат использованы обои, в коридорах, прихожих и кладовках – улучшенная клеевая окраска; в кухнях и ванных комнатах панели окрашиваются масляной краской, у сантехнического оборудования частично облицовываются керамической плиткой. Выше панели улучшенная клеевая окраска; в санузлах масляная панель, выше улучшенная клеевая окраска.
Потолки во всех помещениях - улучшенная клеевая окраска.
В здании запроектирован пассажирский лифт грузоподъёмностью 400 кг. Двери лифта выходят на лестничную площадку. С лестничной площадки осуществляется вход в два общих коридора (каждый для двух квартир).
Все квартиры оснащены сантехническим оборудованием. Также во всех квартирах установлены газовые плиты. Трубопроводы холодного и горячего водоснабжения выполнены из водо-газопроводных оцинкованных труб.
Электропроводка квартир осуществляется от осветительных щитков, от которых в каждую из квартир вводятся две однофазные групповые линии для питания освещения и розеток. Все розетки заземляются. В каждой квартире устанавливается электрический звонок.
4.2 Теплотехнический расчет
Расчет производится согласно главы СНиП П-3-79* «Строительная теплотехника» и СНКК 23-302-2000 (ТСН 23-302-2000 Краснодарского края) Энергетическая эффективность жилых и общественных зданий. Нормы по теплозащите зданий и методических указаний к курсовому и дипломному проектированию «Теплотехнический расчет ограждающих конструкций зданий».
Расчетные условия (по данным СНКК 23-302-2000):
1 Расчетная температура внутреннего воздуха – tint = +200 С;
2 Расчетная температура наружного воздуха – text = -200 С ;
(температура наиболее холодной пятидневки)
3 Продолжительность отопительного периода Z ext = 157сут.;
4 Средняя температура наружного воздуха за отопительный период textav= 0,9С;
5 Градусосутки отопительного периода Dd= 2999 0Ссут.;
6 Назначение – жилое;
7 Размещение в застройке – отдельностоящее;
8 Тип – десятиэтажное;
9-11 Конструктивное решение – кирпичное с продольными несущими стенами;
Объемно-планировочные параметры здания:
12 Общая площадь наружных стен, включая окна и двери
Aw+F+ed = Pst× Hh = (140,454 + 13, 8)*2*31=9563,75м2
Площадь наружных стен (за минусом площади окон и входных дверей):
Aw= 9563,75– 1462 – 645 –20 = 7436,75 м2
AF= 1462 + 645 =2107 м2 – площадь окон и балконных проёмов ;
Aed= 2*1*10 = 20м2 – площадь входных дверей.
Площадь покрытия и площадь пола 1-го этажа равны:
Ас = Аst= 140,454*13,8=1938,27 м2 .
13 Площадь наружных ограждающих конструкций определяется как сумма площади стен (с окнами и входными дверьми) плюс площадь пола, плюс площадь совмещенного покрытия:
Аеsum= Aw+F+ed+ Ас + Аst= 9563,75 + 1938,27 + 1938,27 = 13 440,29м2
14-15 Площадь отапливаемых помещений (общая площадь) Аh и жилая площадь Аr: Аh = 3108,7 + 10927,2 = 14035,9
Аr= 1826,4 + 6292,8 = 8119,2м2;
АL- площадь жилых помещений и кухонь: 195,7*4*10 + 222,71*10 = 10 055,1м2.
16 Отапливаемый объем здания: Vh= Ast× Hh = 1938,27*31= 60086,37 м3
17-18 Показатели объемно-планировочного решения:
- коэффициент остеклённости здания: Р =АF/ Aw+F+ed = 2107/9563,75 = 0,22;
- показатель компактности здания: Кеdes= Аеsum/ Vh = 13 440,29/ 60086,37 = 0,224
Теплотехнические показатели
19 Согласно СниП П-3-79* приведенное сопротивление теплопередаче наружных ограждений R0r, м2 0С/Вт должно приниматься не ниже требуемых значений R0red, которые устанавливаются по табл. 1б в зависимости от градусосуток отопительного периода.
Для Dd = 29990С×сут требуемое сопротивление теплопередаче равно для:
- стен Rwred= 2,45 м2×0С/Вт;
- окон и балконных дверей Rfred= 0.38 м2×0С/Вт;
- входных дверей Rwred= 1,2 м2×0С/Вт;
- совмещённое покрытие Redred = 3,7 м2×0С/Вт;
- пол первого этажа Rf = 3,25 м2×0С/Вт;
- совмещенное покрытие Redred= 3.6 м2×0С/Вт;
- пол первого этажа Rf= 3.3 м2×0С/Вт.
Определимся с конструкциями и рассчитаем толщины утеплителей наружных ограждений по принятым сопротивлениям теплопередачи. Схема конструкции стены приведена на рисунке 4.1.
Условия эксплуатации А.
Характеристики материалов :
1 Цементно-известковый раствор d1 = 50 мм, l = 0,7 ВТ/моК;
2 Утеплитель- плиты минераловатные d2 = х, l = 0, 06 ВТ/моК;
3 Кирпич глиняный обыкновенный d3 = 510 мм, l = 0,7 ВТ/моК;
4 Известково-песчаный раствор d4 = 20 мм, l = 0,81 ВТ/моК.
Рис. 4.1- Схема стены
Так как для градусосуток Dd = 2999 R0треб =2,45 м2×0С/Вт, тогда :
R0 =
[2,45 – (0.115 + 0.071 + 0,729 + 0.025 + 0.043)]×0.06 = x
x = 0.088 dут =0,088 м или 9 см
толщина стены 0,05+0,09+0,51+0,02= 0,67 м.
Для обеспечения требуемого по градусосуткам сопротивления теплопередаче совмещенного покрытия R0тр = 3,7 м2×0С/Вт определяем толщину утеплителя в многослойной конструкции покрытия (термическое сопротивление пароизоляции и рулонного ковра отнесены в запас), схема которого приведена на рисунке 4.2.
Рис. 4.2 – Схема покрытия
Условия эксплуатации А.
1. Железобетонная плита пустотного настила : плотность Y=2500 кг/м3 , коэффициент теплопроводности lА=1,92 Вт/(м0С).
2. Утеплитель – пенобетон: плотность Y=300 кг/м3, коэффициент теплопроводности lА=0,11 Вт/(м0С).
3. Цементно – песчаный раствор: плотность Y=1800 кг/м3, коэффициент теплопроводности lА=0,76 Вт/(м0С).
R0= Rв + Rж/б + Rутеп + Rраств + Rн = R0треб ,
1/8,7 + 0,163 + dутеп/0,11 + 0,04/0,76 + 1/23 = 3,7 ,
откуда dутеп = 0,37 (м).
Для обеспечения требуемого по градусосуткам сопротивления теплопередаче R0тр=3,25 м2×0С/Вт перекрытия над неотапливаемым техническим подпольем без световых проёмов встенах выше уровня земли , определимся конструкцией перекрытия (рис.4.3) и рассчитаем толщину утеплителя.
Рис. 4.3 – Схема перекрытия первого этажа.
Условия эксплуатации А.
1. Паркет дубовый : плотность Y= 700 кг/м3 , коэффициент теплопроводности lА=0,18 Вт/(м0С).
2. Цементно–песчаный раствор: плотность Y=1800 кг/м3, коэффициент теплопроводности lА=0,76 Вт/(м0С).
3. Утеплитель – пенобетон : плотность Y= 300 кг/м3,коэффициент теплопроводности lА=0,11 Вт/(м0С).
4. Железобетонная плита : плотность Y=2500 кг/м3 , коэффициент теплопроводности lА=1,92 Вт/(м0С).
R0= Rв + Rпаркета + Rраствор + Rутеп +Rж/б + Rн = R0треб ,
1/8,7 + 0,015/0,18 + 0,02/0,76 + dутеп/0,11 + 0,163 + 1/23 = 3,25 ,
откуда dутеп = 0,31 (м).
20. Приведенный трансмиссионный коэффициент теплопередачи:
Kmtr= b(Aw/Rwr+AF/ RFr + Aed/ Rtdr+n× Ac/ Rcr+ n× Af/ Rfr)/ Аеsum
Kmtr = 1.13(7436,75/2,45 + 2107/0,38 + 20/1,2 + 1938,27/3.7 +1938,27/3.25)/ 13420,29 =
= 1.13(3035,41 + 5544,74 + 16,67 + 523,86 + 596,39)/13420,29 = 0,818 (Вт/м2×0С);
21 Воздухопроницаемость наружных ограждений принимается по таблице 12* СниП П-3-79*. Согласно этой таблице воздухопроницаемость стен, покрытия, перекрытия первого этажа Gmw= Gmc = Gmf= 0.5 кг/(м2×ч), окон и деревянных переплетов и балконных дверей GmF = 6 кг/(м2×ч).
22 Требуемая кратность воздухообмена жилого здания nа 1/ч, согласно СниП 2.08.01, устанавливается из расчета 3 м3/ч удаляемого воздуха на 1 м2 жилых помещений и определяется по формуле: nа = 3×Аr/(b×Vh)
nа = 3×8119,2/0.85×60086,37 = 0,477 (1/ч);
23 Приведенный инфильтрационный (условный) коэффициент теплопередачи здания определяется по формуле:
Кminf= 0.28×c×na×bv ×Vh gaht×k/Acsum, gaht=353/(275+textav)=1,28 ;
Кminf = 0.28×1×0,477 ×0.85×60086,37×1.28×0.8/13 440,29 = 0.52 (Вт/м2×0С).
24 Общий коэффициент теплопередачи здания, (Вт/м2×0С) определяемый по формуле:
Кm= Kmtr+ Кminf= 0.818+0.52 = 1,338 (Вт/м2×0С)
Теплоэнергетические показатели
25 Общие теплопотери через ограждающую оболочку здания за отопительный период, МДж
Qh = 0.0864×Km×Dd× Aesum = 0.0864×1,338×2999×13440,29 = 4659667,86(МДж).
26 Удельные бытовые тепловыделения qint, Вт/м3, следует устанавливать исходя из расчётного удельного электро- и газопотребления здания, но не менее 10 Вт/м3.
Принимаем 12 Вт/м3.
27 Бытовые теплопоступления в здание за отопительный период, МДж:
Qint = 0.0864×qint×Zht×AL = 0.0864×12×157×10 055,1 = 1636745,1 МДж.
28 Теплопоступления в здание от солнечной радиации за отопительный период, МДж:
Qs = tF×kF×(AF1l1+AF2l2) = 0.75×0.9×(1053,5×357+1053,5×974) =
= 0.675×(376099,5+1026109)= 946490,74 МДж.
29 Потребность в тепловой энергии на отопление здания за отопительный период, МДж, определяют по формуле: Qhy = [Qh– (Qint+ Qs)×Y]×bh ;
Qhy = [4659667,86- (1636745,1+946490,74)×0.8]×1.13 =2930179,48 МДж.
30 Удельный расход тепловой энергии на отопление здания qhdes, кДж/(м2×0Ссут): qhdes = 103 Qhy/Ah×Dd ; qhdes= 103× 2930179,48 /14035,9 ×2999 = 69,61 кДж/(м2×0Ссут),
что составляет 99,44% от требуемого (70 кДж/(м2×0Ссут )).
Следовательно, проект здания соответствует требованиям настоящих норм СНКК 23-302-2000.
... – Нинься. 11 июля - немецкие танковые войска безуспешно атаковали англо-американские войска, высадившиеся на Сицилии. 12 июля - встречное танковое сражение под Прохоровкой — крупнейшее во второй мировой войне. Американский воздушный десант в районе Джелы на Сицилии. 12–13 июля — ночной бой у острова Коломбангара (Соломоновы острова) между американскими и японскими крейсерами и эсминцами; ...
0 комментариев