6.4 Резонансные методы измерения параметров цепей
При резонансных методах измерений используются физические явления в колебательных контурах и генераторах. Соответственно методы подразделяются на контурные и генераторные. Генераторные методы в настоящее время находят, в силу разных причин, ограниченное применение. Наиболее универсальным прибором для измерения параметров цепей является куметр (от латинской буквы Q — характеристики добротности катушки индуктивности), в котором основная измерительная цепь — последовательный колебательный контур.
Упрощенная структурная схема куметра представлена на рис.32. Источником синусоидальных сигналов, подаваемых на последовательный резонансный контур, является генератор тока, нагруженный на малое активное сопротивление R0 ≤ 0,05 Ом. Частота выходных колебаний генератора может изменяться в широких пределах. Уровень входного сигнала необходимо поддерживать постоянным (по вольтметру VI).
При измерении индуктивности катушку подключают к зажимам 1—2. В этом случае резонансный контур будет образован катушкой измеряемой индуктивности Lx с активными потерями RL и межвитковой емкостью ее проводов СL, а также перестраиваемой эталонной емкостью Сэ. Резонанс в контуре на заданной частоте достигается изменением величины емкости Сэ, эталонного конденсатора. Состояние резонанса контура определяется по вольтметру V2, отградуированному в значениях добротности Q. Если измерения емкости Сэ произвести на двух резонансных частотах, то их можно вычислить по следующим уравнениям:
(40)
(41)
где Сэ1, и Сэ2 — известные эталонные емкости при резонансных частотах ƒp1 и ƒР2 соответственно.
Пусть соотношение частот ƒp1 = KƒР2, где К — коэффициент — вещественное число. Тогда совместное решение уравнений (40), (41) дает возможность вычислить ранее неизвестные величины параметров L и CL:
(42)
(43)
С помощью куметра можно также определять неизвестные параметры R, С, tgδc, подключая измеряемые резистор или конденсатор к зажимам 3 — 4.
Погрешности измерения параметров L, С, tgδc, R куметром лежат в пределах 1...5% в зависимости от используемой схемы.
Причинами появления этих погрешностей могут являться: нестабильность генератора, наличие в контуре постороннего сопротивления R0, неточность шкалы конденсатора эталонной емкости Сэ, погрешности измерительных приборов VI, VI, погрешность считывания показаний.
7. Метод дискретного счета с мостами переменного тока
В методе используется апериодический процесс, возникающий при подключении заряженного конденсатора или катушки индуктивности с протекающим в ней током к образцовому резистору. В первом случае при измерении сопротивления разряд образцового конденсатора проходит через измеряемый резистор. Структурная схема измерителя емкости, реализующая метод дискретного счета, показана на рис.33.
Рис.33. Структурная схема измерителя емкости с мостом переменного тока, реализующая метод дискретного счета
Перед измерением емкости ключ Кл устанавливается в положении 1 и конденсатор Сх заряжается через ограничительный резистор Rд до значения стабилизированного источника напряжения Е.
В момент начала измерения t1 (рис.34.а) управляющее устройство импульсом управления переключает триггер из состояния 0 в состояние 1, очищает предыдущие показания счетчика импульсов и переводит ключ Кл в положение 2. Конденсатор Сд начинает разряжаться через образцовый резистор Rобр по экспоненциальному закону (рис.34, б), который аналитически описывается выражением
В момент времени t1 единичный импульс Uт с выхода триггера открывает схему совпадения и счетчик начинает счет тактовых импульсов генератора, следующих с некоторой частотой ƒ.
Напряжение Uс подается на один из входов устройства сравнения, ко второму входу которого подводиться напряжение с резистора R2 состоящего из резисторов R1 и R2. Это напряжение определяется выражением:
UR = ER2/ (R, + R2). (45)
Сопротивления R1 и R2 выбирают так, чтобы при разряде конденсатора уменьшающееся напряжение
напряжению при разряде UR. В момент t2, когда сравниваются эти напряжения, на выходе устройства сравнения возникает импульс Uус, переключающий триггер в исходное состояние, при котором задним фронтом его импульса UT закрывается схема совпадения, и счетчик прекращает счет тактовых импульсов (рис.34, б...д).
Поскольку при t - t2 напряжения Uc= UR и τ = t2- tu то
(46)
(47)
Итак, напряжение UR, снимаемое с делителя R1, R2, должно иметь определенное значение, что достигается подбором сопротивлений его резисторов.
При поступлении на счетчик N импульсов
N=fτ, (48)
гдеƒ— частота следования счетных импульсов.
Так как τ = RобрCx, то при фиксированных значениях частоты ƒи сопротивления Ro6p
(49)
где коэффициент К1 =ƒRo6p.
Согласно (49), величина измеряемой емкости прямо пропорциональна числу импульсов N, поступивших на счетчик.
Наличие образцового конденсатора Со6р позволяет аналогичным образом измерить сопротивление резистора:
Rx= N/(ƒCo5p) = N/K2, (50)
где коэффициент К2 = ƒСобр.
Метод дискретного счета, использующий мосты переменного тока, широко применяется при создании цифровых измерителей емкостей и сопротивлений. К достоинствам метода следует отнести, прежде всего, достаточно высокую точность измерений.
Погрешность измерений цифровым методом составляет 0,1...0,2% и зависит в основном от нестабильности сопротивлений резисторов RобР, R1, R2 или конденсатора Собр, нестабильности частоты генератора счетных импульсов, а также неточности срабатывания устройства сравнения.
... на объект измерения, оценку точности измерений и представление результатов измерений в стандартной форме. ИВК по назначению классифицируются на: 1) типовые – для решения широкого круга типовых задач автоматизации измерений, испытаний и так далее; 2) специализированные – для решения уникальных задач автоматизации измерений; 3) проблемные – для решения широко распространенной, но ...
... 6 Определение предела дополнительной допускаемой погрешности измерения (), связанной с изменением сопротивления измерительного (стеклянного) электрода и (или) электрода сравнения (вспомогательного электрода) 9.6 + + Примечания 1 Знак "+" означает, что операцию проводят. 2 Для приборов, предназначенных для работы в режиме измерения , операцию по пункту 3 таблицы при первичной ...
... мероприятия по обеспечению однородности выпускаемой продукции. Все эти мероприятия можно объединить в четыре группы: 1. совершенствование технологии производства; 2. автоматизация производства; 3. технологические (тренировочные) прогоны; 4. статистическое регулирование качества продукции. 2.10. Проектирование технологических процессов с использованием средств ...
... и периодического профиля диаметрами 6-40 миллиметров, предназначенную для армирования железобетонных конструкций. Стандарт содержит сертификационные требования к термомеханически упрочненной арматурной стали для железобетонных конструкций. Требования к методам испытаний стали арматурной устанавливает следующая нормативная документация: 1 ГОСТ 12004-81 «Сталь арматурная. Методы испытания на ...
0 комментариев