9. History

 

Ancient Greeks and Romans used aluminium salts as dyeing mordants and as astringents for dressing wounds; alum is still used as a styptic. In 1761 Guyton de Morveau suggested calling the base alum alumine. In 1808, Humphry Davy identified the existence of a metal base of alum, which he at first termed alumium and later aluminum (see Etymology section, below).

The metal was first produced in 1825 (in an impure form) by Danish physicist and chemist Hans Christian Ørsted. He reacted anhydrous aluminium chloride with potassium amalgam and yielded a lump of metal looking similar to tin.[35] Friedrich Wöhler was aware of these experiments and cited them, but after redoing the experiments of Ørsted he concluded that this metal was pure potassium. He conducted a similar experiment in 1827 by mixing anhydrous aluminium chloride with potassium and yielded aluminium.[35] Wöhler is generally credited with isolating aluminium (Latin alumen, alum), but also Ørsted can be listed as its discoverer.[36] Further, Pierre Berthier discovered aluminium in bauxite ore and successfully extracted it.[37] Frenchman Henri Etienne Sainte-Claire Deville improved Wöhler's method in 1846, and described his improvements in a book in 1859, chief among these being the substitution of sodium for the considerably more expensive potassium.

(Note: The title of Deville's book is De l'aluminium, ses propriétés, sa fabrication (Paris, 1859). Deville likely also conceived the idea of the electrolysis of aluminium oxide dissolved in cryolite; however, Charles Martin Hall and Paul Héroult might have developed the more practical process after Deville.)

Before the Hall-Héroult process was developed, aluminium was exceedingly difficult to extract from its various ores. This made pure aluminium more valuable than gold[citation needed]. Bars of aluminium were exhibited alongside the French crown jewels at the Exposition Universelle of 1855[citation needed], and Napoleon III was said[citation needed] to have reserved a set of aluminium dinner plates for his most honoured guests.

Aluminium was selected as the material to be used for the apex of the Washington Monument in 1884, a time when one ounce (30 grams) cost the daily wage of a common worker on the project;[38] aluminium was about the same value as silver.

The Cowles companies supplied aluminium alloy in quantity in the United States and England using smelters like the furnace of Carl Wilhelm Siemens by 1886.[39] Charles Martin Hall of Ohio in the U.S. and Paul Héroult of France independently developed the Hall-Héroult electrolytic process that made extracting aluminium from minerals cheaper and is now the principal method used worldwide. The Hall-Heroult process cannot produce Super Purity Aluminium directly. Hall's process,[40] in 1888 with the financial backing of Alfred E. Hunt, started the Pittsburgh Reduction Company today known as Alcoa. Héroult's process was in production by 1889 in Switzerland at Aluminium Industrie, now Alcan, and at British Aluminium, now Luxfer Group and Alcoa, by 1896 in Scotland.[41]

By 1895 the metal was being used as a building material as far away as Sydney, Australia in the dome of the Chief Secretary's Building.

Many navies use an aluminium superstructure for their vessels, however, the 1975 fire aboard USS Belknap that gutted her aluminium superstructure, as well as observation of battle damage to British ships during the Falklands War, led to many navies switching to all steel superstructures. The Arleigh Burke class was the first such U.S. ship, being constructed entirely of steel.

In 2008 the price of aluminium peaked at $1.45/lb in July but dropped to $0.7/lb by December.[42]


10. Etymology

 

10.1 Nomenclature history

 

The earliest citation given in the Oxford English Dictionary for any word used as a name for this element is alumium, which British chemist and inventor Humphry Davy employed in 1808 for the metal he was trying to isolate electrolytically from the mineral alumina. The citation is from his journal Philosophical Transactions: "Had I been so fortunate as..to have procured the metallic substances I was in search of, I should have proposed for them the names of silicium, alumium, zirconium, and glucium."[43]

By 1812, Davy had settled on aluminum. He wrote in the journal Chemical Philosophy: "As yet Aluminum has not been obtained in a perfectly free state."[44] But the same year, an anonymous contributor to the Quarterly Review, a British political-literary journal, objected to aluminum and proposed the name aluminium, "for so we shall take the liberty of writing the word, in preference to aluminum, which has a less classical sound."[45]

The -ium suffix had the advantage of conforming to the precedent set in other newly discovered elements of the time: potassium, sodium, magnesium, calcium, and strontium (all of which Davy had isolated himself). Nevertheless, -um spellings for elements were not unknown at the time, as for example platinum, known to Europeans since the sixteenth century, molybdenum, discovered in 1778, and tantalum, discovered in 1802.

The -um suffix on the other hand, has the advantage of being more consistent with the universal spelling alumina for the oxide, as lanthana is the oxide of lanthanum, and magnesia, ceria, and thoria are the oxides of magnesium, cerium, and thorium respectively.

The spelling used throughout the 19th century by most U.S. chemists ended in -ium, but common usage is less clear.[46] The -um spelling is used in the Webster's Dictionary of 1828, as it was in 1892 when Charles Martin Hall published an advertising handbill for his new electrolytic method of producing the metal, despite his constant use of the -ium spelling in all the patents[40] he filed between 1886 and 1903.[47] It has consequently been suggested that the spelling reflects an easier to pronounce word with one fewer syllable, or that the spelling on the flier was a mistake. Hall's domination of production of the metal ensured that the spelling aluminum became the standard in North America; the Webster Unabridged Dictionary of 1913, though, continued to use the -ium version.

In 1926, the American Chemical Society officially decided to use aluminum in its publications; American dictionaries typically label the spelling aluminium as a British variant.


Информация о работе «Aluminium»
Раздел: Химия
Количество знаков с пробелами: 43765
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
98819
0
0

... . The advertising idea is defined. Advertising strategy is however insufficiently clearly stated. We will take advantage of the given reserve for increase of efficiency of an advertising campaign of Open Company "Натали", i. e. we will develop advertising strategy.   3.3 Use of methods of optimization in advertising activity One of optimisation methods in advertising activity is use of ...

Скачать
393037
13
0

... in 1975 together with Paul Alien, his partner in computer language development. While attending Harvard in 1975, Gates together with Alien developed a version of the BASIC computer programming language for the first personal computer. In the early 1980s. Gates led Microsoft's evolution from the developer of computer programming languages to a large computer software company. This transition ...

Скачать
52726
0
0

... , weight, our distinctive marks.That are shown in the blank enclosed. Plz observe all these requirements or we’ll have to refuse the offer with no charges payed. Ex 2: Write a letter for your firm to an English engineering firm, ordering a special machine. Give packing and marking instructions. thx u for offer of april 1.we r very interested in this sort of machine & would like to order 5 ...

Скачать
31702
0
6

... of lithium were produced through the electrolysis of lithium chloride by Robert Bunsen and Augustus Matthiessen.[20] The discovery of this procedure henceforth led to commercial production of lithium metal, beginning in 1923 by the German company Metallgesellschaft AG, which performed an electrolysis of a liquid mixture of lithium chloride and potassium chloride.[20][29] The production and use ...

0 комментариев


Наверх