1.2 Рельеф как фактор почвообразования
Рельеф выступает как главный фактор перераспределения солнечной радиации и осадков, в зависимости от экспозиции и крутизны склонов, и оказывает влияние на водный, тепловой, питательный, окислительно-восстановительный и солевой режимы почв (И.С. Кауричев, 1982).
Влияние микрорельефа легко обнаруживается по величине травостоя, густоте и росту культурных растений. По микропонижениям в засушливых районах обычно наблюдается мощный травостой, в то время как на микроповышениях он менее развит. Вследствие наличия микрорельефа происходит неравномерное развитие и формирование урожаев полевых культур, поэтому на практике прибегают к нивелированию поверхности с целью создания однородных рельефных и гидрологических условий (А.Т. Цуриков, 1986).
Влияние форм мегарельефа проявляется преимущественно в регулировании распределения атмосферной влаги, переносимой крупными воздушными массами, и в изменении гидротермических условий в почвах в зависимости от абсолютной высоты (В.В. Добровольский, 1999).
Так, в горах возникает вертикальная зональность климата, растительности и почв, вследствие понижения температуры воздуха с высотой и изменения в увлажнении. Воздушные массы, приближаясь к горам, медленно поднимаются и постепенно охлаждаются, что способствует выпадению осадков. Перевалив через горы, те же воздушные массы, опускаясь, нагреваются и становятся сухими (И.С. Кауричев, 1982).
На пространствах равнин и плато происходит постепенное изменение количества атмосферных осадков по мере распространения приносящих их воздушных масс. Это создает необходимые условия для постепенной смены типов растительности и образования биоклиматических зон и подзон.
Зональное размещение этих важнейших факторов почообразования обуславливает формирование почвенных зон и подзон. Проявлению горизонтальной зональности почв благоприятствует однотипность почвообразующих пород (В.П. Ковриго, И.С. Кауричев, Л.М. Бурлакова, 2000).
Влияние форм мезорельефа и микрорельефа на почвообразование проявляется на ограниченной площади в перераспределение солнечной энергии и выпавших осадков (В.В. Добровольский, 1999).
Перераспределение солнечной энергии на поверхности зависит от расчлененности толщи, крутизны склонов и их экспозиции.
Северные склоны получают значительно меньше тепла, чем южные, поэтому хуже прогреваются, что, в свою очередь, отражается на водном режиме и характере растительности.
Выпавшие атмосферные осадки частично стекают в пониженные места. В результате почвы верхней части склонов получают меньше влаги, чем находящиеся рядом почвы понижений. Поэтому в отрицательных формах рельефа часто происходит переувлажнение и заболачивание почв.
С рельефом также тесно связан уровень грунтовых вод. На возвышенных местах они опущены на большую глубину, чем в понижениях. Близкое залегание грунтовых вод на пониженных участках приводит к образованию болот, а при засоленности грунтовых вод в условиях жаркого сухого климата – к формированию засоленных почв (А.Ф. Цыганенко, 1972).
Поэтому расположенные в одном и том же ландшафте, часто разделенные лишь десятками метров почвы отрицательных и положительных элементов рельефа существенно отличаются водно-воздушным режимом, значениями рН, содержанием подвижных форм химических элементов, особенностями большого и малого круговорота веществ.
1.3 Влияние рельефа на эрозионные процессы
Рельеф оказывает большое влияние на развитие эрозионных процессов. В условиях склоновых форм рельефа возможно проявление водной эрозии, то есть смыва и размыва почвы. Равнинные формы рельефа в районах с засушливым и континентальным климатом благоприятствуют возникновению ветровой эрозии (И.С. Кауричев, 1982).
Возникновение водной эрозии тесно связано со стоком дождевых и талых вод, которая начинает формироваться на местности, имеющей уклон. Уклон местности определяется по формуле:
, (1)
где I - уклон местности;
H – разность высот верхней и нижней частей склона (м);
L – горизонтальное проложение данной части склона (м).
Уклон выражают дробью (натуральное выражение), а крутизну в градусах.
Процессы эрозии начинают развиваться при крутизне склона 0,5-2о. С увеличением крутизны склона повышается скорость стекания поверхностных вод, а, следовательно, и интенсивность эрозии.
На склонах крутизной 2-6о эрозия заметно усиливается, а при крутизне от 6о до 10о она проявляется в полной мере (П.С. Захаров, 1971).
Эрозии в той или иной степени подвержены почвы всех природных зон Челябинской области. Общая площадь эродированных и потенциально опасных к эрозии земель составляет 1441,8 тыс. га или 43% сельскохозяйственных угодий. Водная эрозия проявляется в основном в горно-лесной зоне. На территориях районов других зон почвы также подвержены водной эрозии, так как около 1,14 млн. га земель Челябинской области имеют уклон 1-3о и 500 тыс. га – свыше 3о (Кирин Ф.Я., 1991).
Земли, подверженные дефляции, выявлены преимущественно в степной зоне. На них приходится 38% сельскохозяйственных угодий. Развитию ветровой эрозии на территории степной зоны способствуют большая распаханность почвенного покрова, его генетический состав, характер почвообразовательных пород и рельефа.
Значительное влияние на процессы смыва оказывает не только крутизна склона, но и его форма (рисунок 1). На прямых склонах процесс эрозии вниз по уклону увеличивается в связи с увеличением массы стекающей воды. Разрушающая сила стекающей воды нарастает постепенно. Выраженный смыв проявляется приблизительно от середины склона.
На выпуклых склонах эрозия сильнее выражена в нижней части, где находятся самые крутые участки склона. Здесь, кроме увеличения массы стекающей воды, происходит повышение и скорости её стекания, поэтому эрозия резко возрастает.
Склоны вогнутой формы характеризуются наиболее выраженными эрозионными процессами в верхней части склона, которая является более крутой. Книзу эрозия уменьшается, в связи с чем, здесь может происходить аккумуляция смытого выше материала.
Считается, что если у прямого склона смыв почвы принять за единицу, то у выпуклого он будет составлять одна целая пять десятых, а у вогнутого – ноль целых пять десятых (П.С. Захаров, 1971).
Сложные склоны состоят из прямых, вогнутых и выпуклых участков, эрозия здесь протекает неравномерно, в зависимости от формы участка.
На степень проявления водной эрозии оказывает влияние длина склона (таблица 1).
Таблица 1
Классификация склонов по длине
Название склонов по длине | Протяженность, м |
чрезвычайно короткие | менее 50 |
очень короткие | 50-100 |
короткие | 100-200 |
средней длины | 200-500 |
повышенной длины | 500-1000 |
длинные | 1000-2000 |
очень длинные | 2000-4000 |
чрезвычайно длинные | более 4000 |
Увеличение длины склона вызывает возрастание массы воды, поступающей к нижней части склона, в связи, с чем усиливается разрушительная энергия потока.
Исследования, проведенные Новосильской опытно-овражной станцией, показали, что общий размер смыва почвы при снеготаянии увеличивается пропорционально длине склона в степени одна целая пять десятых (М.Н. Заславский, 1987).
Большое влияние на почвообразование, дифференциацию почвенного покрова и сельскохозяйственное использование почв оказывает крутизна склонов (таблица 2).
Таблица 2
Классификация склонов по крутизне поверхности
Виды склонов | Крутизна, градусы |
Очень пологие | менее 1 |
Пологие | 1-2 |
Покатые | 2-5 |
Сильнопокатые | 5-8 |
Крутые | 8-20 |
Очень крутые | 20-45 |
Обрывистые | более 45 |
Обычно склонам в 5-8о соответствует сильная степень смытости почв, склонам в 4-6о – средняя, склонам 1-2о – слабая, а при склонах менее 1о смыв почв почти отсутствует (Н.Ф. Ганжара, 2001).
Земли, подверженные дефляции, выявлены преимущественно в степной зоне. На них приходится 38% сельскохозяйственных угодий. Развитию ветровой эрозии на территории степной зоны способствуют большая распаханность почвенного покрова, его генетический состав, характер почвообразующих пород и рельефа.
Ветровая эрозия возникает при любой форме рельефа. Ветер разносит продукты эрозии в различном направлении, даже вверх по склону. В первую очередь ветровой эрозии подвергаются выпуклые участки поверхности и ветроударные склоны. Чем круче ветроударный склон, тем больше скорость ветра и сильнее разрушение почвы (А.С. Извеков, П.Н. Рыбалкин, 1975).
Экспозиция склона определяет приток солнечной энергии, это влияет на микроклимат склона, развитие и продуктивность растительного покрова, что в свою очередь сказывается на проявлении эрозии. Южные и западные склоны больше страдают от эрозии, чем северные и восточные.
На южных склонах более резко выражены колебания температур и влажности почвы, чем на склонах других экспозиций. Летом склоны сильно нагреваются и иссушаются, а растительность на них выгорает. У почв южных склонов, как правило, гумусовый горизонт имеет меньшую мощность. Все это приводит к усилению эрозии (П.С. Захаров, 1971).
Восточные и западные склоны по проявлению эрозии занимают промежуточное положение, но западные склоны лучше освещаемые, нагреваются несколько сильнее восточных, поэтому больше подвержены эрозии.
Водная и ветровая эрозии наносят большой вред сельскому хозяйству.
Вследствие смыва водой безвозвратно теряются самые плодородные слои почвы и вымываются в реки и моря огромные количества элементов питания растений (И.С. Кауричев, 1982).
С полей бывшего СНГ ежегодно сбрасывается 3330 км3 поверхностных вод. Они смывают 2-3 млрд. т. мелкозема, а с ним теряется около 100млн. т. гумуса: 5.4 млн. т.– N; 1.8 – P; 36 млн. т. – K. В том числе 460 тыс.т. нитратного и аммиачного азота, 240 – подвижного фосфора и 480 тыс.т. - обменного калия (В.А. Беляев, 1976, С.Н. Юркин, 1978).
При эрозии резко ухудшаются водно-физические свойства почвы, что значительно сокращает их способность быстро поглощать и удерживать воду осадков. В связи с этим на склонах со смытыми почвами поверхностный сток бывает большим, особенно при выпадении ливней.
Смытые почвы имеют меньше фракций ила (частицы менее 0,001мм) и физической глины (частицы менее 0,01мм). В них накапливаются более грубые механические элементы, главным образом, песок (0,25-0,05мм). Обычно с увеличением смытости почв увеличивается её бесструктурность. Чем больше смыты почвы, тем значительнее убывает их порозность. У таких почв ухудшается водопроницаемость и аэрация. Чем сильнее смыты почвы, тем меньше влаги они поглощают (Ф.А. Миронченко, 1976).
Вследствие потери почвой питательных веществ и ухудшения водно-физических свойств происходит снижение урожаев. Только на эродированных землях Центрально-Черноземной зоны недобор продукции растениеводства ежегодно составляет в пересчете на зерно 12,2 млн. ц (В.Д. Иванов, 1984).
В результате развития эрозии почв происходит не только количественное снижение урожая, но и ухудшается его качество, уменьшается масса тысячи зерен и изменяется его биохимический состав. Наибольшее уменьшение абсолютного веса зерна наблюдается в засушливые годы, наименьшее – во влажные.
Следует также отметить большую засоренность сорняками смытых почв в связи с тем, что на эродированных почвах сомкнутость культурных растений уменьшена, создаются благоприятные условия для развития сорняков. На среднесмытых почвах засоренность полей в 2-4 раза больше, чем на несмытых.
Смытые почвы имеют следующие общие признаки и свойства: уменьшение мощности, более светлая окраска профиля и небольшая глубина залегания карбонатов, в сравнении с неэродированными почвами; накопление в верхнем горизонте частиц размером более 0,05 мм; уменьшение содержания органического вещества; уменьшение прочности и количества водопрочных агрегатов; ухудшение водного, воздушного, теплового режимов; уменьшение численности почвенных микроорганизмов по сравнению с неэродированными почвами; повышение липкости, пластичности и сопротивляемости при обработке.
Перечисленные свойства эродированных почв в совокупности определяют производительность участков с различной степенью смытости, что, в конечном счете, влияет на величину и качество урожая.
... профессиональных заболеваний [27]. 5.1.1 Требование безопасности в агрохимической лаборатории Исследование почвенных образцов на кислотно-основное состояние осуществляется в агрохимической лаборатории. К работе в агрохимической лаборатории допускаются лица, не имеющие медицинских противопоказаний и прошедшие медицинский осмотр (при поступлении на работу и периодически в процессе работы). Не ...
... , слабее этот процесс протекает в южных черноземах. Наиболее подвержена снижению гумусово-аккумулятивного процесса пашня. 3.2 Деградационные изменения состава и свойств черноземов лесостепи и степи при распашке 3.2.1 Физические и водные свойства В условиях интенсивного сельскохозяйственного использования для разработки прогноза возможных изменений свойств почвы необходимо знание вопросов ...
... равен минус 0,884. Высокий коэффициент корреляции указывает на тесную взаимосвязь между уровнем засоренности и урожайностью. 5. Экономическая эффективность применения почвенных и листовых гербицидов на сое в северной лесостепи Южного Урала Применение гербицидов - один из самых эффективных методов борьбы с сорняками, так как уничтожение и подавление сорняков одними агротехническими и ...
... составила 77,26 %, дисперсия S2 - 60,363, стандартное отклонение S -7,769 %, коэффициент вариации V - 10,0 %. Незначительная вариабельность структурного состояния целинного чернозема обуславливает соответствующие показатели плодородия в биологически активном слое. Абсолютная ошибка средней Sx составила 1,656. Доверительный интервал генеральной средней (x±t0,5Sx) для 5 % уровня значимости составил ...
0 комментариев