Балансировка роторной системы

9586
знаков
6
таблиц
0
изображений

Министерство образования и науки РФ

Федеральное агентство по образованию

Южно – Уральский государственный университет

Кафедра « Автомобильный транспорт »

Курсовая работа

по дисциплине «Вибродиагностика»

на тему «Балансировка роторной системы»

Выполнил: студент группы АТ – 551

Проверил: Иванов Д.Ю.

Челябинск

2008


Аннотация

Курсовая работа по курсу: Вибродиагностика. – Челябинск: ЮУрГУ, АТ, 2008. – 14 с. 3 рис. Библиография литературы – 1 наименование.

В данной курсовой работе экспериментально исследуются колебания роторной системы, и по полученным экспериментальным данным производится балансировка одного из дисков лабораторной установки, производится расчет корректировочной массы, и угол на который необходимо установить корректировочную массу. Также проведен теоретический расчет значений амплитуд ускорений и проведено сравнение экспериментальных и теоретических результатов.


Содержание

Введение

1. Балансировка роторной системы

1.1. Цель работы

1.2. Описание установки и методика проведения эксперимента

1.3. Определение величины и угла прикрепления корректирующей массы

2. Теоретическое определение значений амплитуды ускорений

3. Оценка адекватности проведенной балансировки

Литература

Приложения


Введение

Необходимость точного измерения и анализа механических колебаний возникла с первых шагов разработки и конструирования машин, учитывающих вопросы амортизации механических колебаний и виброизоляции. Исследование механических колебаний прочных машин медленного действия в прошлом основывалось на опыте инженеров-конструкторов и применении несложных оптических приборов, измеряющих смещение механических колебаний.

В последние 15-20 лет произошло быстрое развитие техники измерения и анализа механических колебаний (виброметрии) с тем, чтобы удовлетворить всем требованиям исследования и оценки новых, легких и быстродействующих машин и оборудования.


1. Балансировка роторной системы

В данной работе экспериментально исследуются колебания роторной системы, и по полученным экспериментальным данным производится балансировка одного из дисков лабораторной установки. При этом производится расчет корректировочной массы, и угол на который необходимо установить корректировочную массу. Сопоставляя полученные теоретические и экспериментальные результаты, можно сделать выводы о качестве проведения балансировочных работ.

 

1.1 Цель работы

1. Проведение балансировки ротора по методу трех пусков.

2. Построение векторной диаграммы для определение величины и фазового угла корректирующей массы.

3. Сравнение полученных экспериментальных и теоретических результатов.

 

1.2 Описание установки и методика проведения эксперимента

Экспериментальная установка для определения АЧХ и ФЧХ системы показана на рис 1. Она состоит из роторной системы, управляющей и измерительной аппаратуры. Исследуемая система представляет собой простейшую роторную систему. Конструктивно лабораторная установка состоит из основания, на котором крепятся две опоры, кронштейн датчика и асинхронный двигатель типа КД-50-У4, мощностью 60 Вт с номинальной частотой вращения 2750 об/мин. В опорах на подшипниках качения вращается вал с двумя дисками. Вал соединен с двигателем с помощью муфты. Датчики виброускорения помещаются на опоры в вертикальном и горизонтальном направлениях, ближе к дискам с дисбалансом. На рисунке 1 представлена схема установки

Датчики виброускорения - пьезоэлектрические акселерометры установлены на опорах - подшипниках качения. Сигнал виброускорения с датчиков поступает на измерители амплитуды, датчики измеряют мгновенные значения виброускорений; измерители амплитуды показывают амплитуды виброускорения на опорах. Эксперимент проводится способом трех пусков с пробными массами.

Способ трех пусков с пробными массами

Данный способ применяют в тех случаях, когда отметку фазы получить нельзя. При этом используют виброизмерительную аппаратуру для определения амплитуды колебаний корпуса или бесконтактные датчики, измеряющие перемещения ротора. При первом запуске определяем амплитуду  вибрации с начальным (исходным) дисбалансом ротора. Затем в плоскости коррекции устанавливаем пробную массу , запускаем ротор и определяем новую амплитуду колебаний корпуса. Эту операцию повторяем еще 2 раза, устанавливая  на одном и том же радиусе, но под различными углами. Полученным трем амплитудам присваиваются номера в следующей зависимости: A1>A2, A1>A3. После этого строим векторную диаграмму дисбалансов (рисунок 2) .

Получаем систему треугольников, в каждом из которых неизвестна одна сторона Ап, но стороны равны между собой и пропорциональны. На основании теоремы косинусов:

А1202п2 – 2А0Апcos; (1)

A2202п2 – 2А0Апcos( – ); (2)

A3202п2 – 2А0Апcos( - ). (3)

где  - угол между первым и вторым положением пробной массы;

- угол между вторым и третьим положением пробной массы;

 - угол между первым и третьим положением пробной массы.

Угловое положение  для постановки корректирующей массы относительно положения первой пробной массы (в том же направлении, по которому отмечают,  и ) определяем по зависимости полученной из первых трех выражений:

; (4)

Величину Ап находим после подстановки значения  в одно из тех же выражений, или из их разности:

; (5)

на основании чего находим и величину корректирующей массы из соотношения

. (6)

Если балансировку выполнять удалением массы , то место коррекции находят под углом + 180°.

Порядок проведения работы

• проводится экспериментальное исследование колебаний системы; результаты эксперимента заносятся в таблицу;

• по результатам эксперимента вычисляются значения величины корректирующей массы и фазовый угол ее установки;

• строится векторная диаграмма дисбалансов диска роторной системы;

• сравнение теоретических и экспериментальных результатов;

• определение остаточного дисбаланса;

• делаются выводы о качестве проведенных балансировочных работ.

Результаты проведения эксперимента представлены в табл.

Таблица 1 – Результаты проведения эксперимента

,град

,град

,гр

1 вертикально 3,685 4,652 3,281 2,271 300 255 2,09
2 вертикально 2,189 2,884 1,931 1,216 300 255 1,985
1 поперечно 2,632 16,8904 7,079 2,121 60 315 2,09
2 поперечно 3,384 4,392 3,982 2,265 60 315 1,985

1.3 Определение величины и угла прикрепления корректирующей массы

Установим порядковые номера амплитуд вибраций с пробными массами и угловые положения второго и третьего номеров относительно первого; согласно требованию А, Аз.

По формуле (4), (5),(6) рассчитываем значения угла  для постановки корректирующей массы, величину Аn и значение корректирующей массы m k.

Корректирующую массу установим на выбранном радиусе R, под углом 186,74 и (189,12) от места постановки пробной массы с присвоенным номером один (), по направлению к месту пробной массы с присвоенным номером два , т.е. угол  находим между углами  и . Векторная диаграмма дисбалансов, построенная с помощью результатов рассчитанных по формулам (4), (5), (6) показана в приложении.

Таблица 2 – Результаты расчетов

,гр

1 вертикально 2,09 0,310497 197,2581 0,7755 5,6031
2 вертикально 1,985 0,344665 199,0269 7,7115 0,2410
1 поперечно 2,09 0,934072 223,0695 0,3997 16,8045
2 поперечно 1,985 -0,65057 146,9363 22,8268 0,2410

По полученным данным строим векторные диаграммы дисбалансов


2 Балансировка роторной установки с использованием программного обеспечения

Теоретическое определение значений амплитуды ускорений производится при помощи программы ATLANT. Данная программа предназначена для теоретического определения амплитуд ускорений при балансировке роторной системы, места положения корректирующей массы для достижения наилучшего результата балансировки, также данная программа позволяет корректировать место положения данного груза, если расчетный угол не соответствует доступным для корректирования углам и оценить эффективность балансировки.

Результаты расчета приведены в таблицах 3, 4 и 5.

Таблица 3 – Результаты расчета амплитуд ускорений

Плоскость Масса Угол Точка Первая гармоника расчетная эффективность балансировки
Вертикальная Поперечная
амплитуда фаза амплитуда фаза
М01 3, 47 27,6 Т01 0,83 114,1 0,13 81,4

78,326 %

М02 0,25 183,0 Т02 0,53 90,0 0,86 278,7

Таблица 4 – Результаты расчета положения корректирующей массы в плоскости МО1

Расчетный груз Разложение грузов
плоскость М01 доступные углы разложение груза
Груз 3,47 Угол 1 35 1,7731
Угол 27,6 Угол 2 20 1,7267

Таблица 5 – Результаты расчета положения корректирующей массы в плоскости МО2

Расчетный груз Разложение грузов
плоскость М02 доступные углы разложение груза
Груз 0,25 Угол 1 170 0,0337
Угол 183,0 Угол 2 185 0,2172

3 Оценка адекватности проведенной балансировки

Для оценки адекватности проведенной балансировки определим относительные погрешности теоретических значений корректирующей массы.

Погрешности определяются по следующим формулам:

 (7)

Результаты расчета погрешностей выбранной математической модели представлены в таблице 6.

Таблица 6 – Погрешности балансировки

%

1 вертикальная 3,47 5,6031 61,5
2 вертикальная 0,25 0,2410 3,6
1 горизонтальная 3,47 16,8045 384,3
2 горизонтальная 0,25 0,2410 3,6

Данные погрешности отражают неточность проведения балансировочных мероприятий.

Вывод: Данные полученные в результате проведенного эксперимента и расчетов показывают, что выбранный способ трех пусков с пробными массами не позволяют достаточно точно определить массу и угол его установки.

Определение дисбаланса возможно лишь на основе исследований тонкой структуры виброакустического сигнала и связи его с кинематикой и динамикой агрегата.


Литература

1. Захезин А.М., Колосова О.П., Малышева Т.В. Теоретическая и прикладная механика: Учебное пособие. – Челябинск: Изд. ЮУрГУ, 2001. – 47с.


Информация о работе «Балансировка роторной системы»
Раздел: Транспорт
Количество знаков с пробелами: 9586
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
37549
0
9

... Ford не вмешивается. Mazda по праву может считаться мировым автопроизводителем - ее сборочные заводы в 21 стране позволяют ей экспортировать свои автомобили в 120 государств мира. Mazda Tribute 2000 модельного года 2.2 Эмблемы компании Mazda 1936—1962 В этой версии эмблемы буква «M» была стилизована под герб Хиросимы 1962—1975 В этой версии эмблемы буква «M» была стилизована ...

Скачать
86247
55
6

... с точки зрения БЖД В данном дипломном проекте разрабатывается установка, используемая в фермерском хозяйстве для изготовления сублимированного пищевого продукта. При работе установки могут возникать различные опасные и вредные производственные факторы. Установка состоит из проектируемого вакуумного механического ротационно-пластинчатого насоса; вакуумной сублимационной камеры объемом 1м3; ...

Скачать
84936
16
36

... трудозатраты на проведение ТО-1, чел/час; Т2 - трудозатраты на проведение ТО-2, чел/час; Т3 - трудозатраты на проведение ТО-3, чел/час. Водородное отделение цеха №4 ЗАО «Каустик» состоит из 2 компрессоров одинаковой мощности. Количество трудозатрат на обслуживание водородного отделения определили по формуле , (44) где n – количество обслуживаемых компрессоров, шт. ...

Скачать
69107
0
11

... свободного газа на приёме насоса, % по объёму-50 - максимальная массовая концентрация твердых частиц, г/л – 0,8 - микротвердость частиц, HRC не более – 55 - максимальная температура, °С – 110. Винтовые насосы характеризуются основными гидравлическими параметрами: напор, давление, мощность, КПД. В приведенных ниже табл. 2 и 3 представлены технические характеристики установок электропогружных ...

0 комментариев


Наверх