3. АНАЛИЗ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ И ПЛАН ЭНЕРГОСБЕРЕГАЮЩИХ МЕРОПРИЯТИЙ
В результате проведения первоначального этапа энергоаудита можно сделать вывод, что система отопления находится в неудовлетворительном состоянии и не отвечает всем требованиям (санитарно-гигиенические, монтажные, эстетические), таким образом, тепловая мощность системы используется неэффективно. Часть исследованных помещений имеет температуру, превышающую санитарно-гигиенические нормы. Это свидетельствует об избыточном количестве секций в радиаторах.
Для части помещений характерен недостаточный прогрев, так как при засорении отопительных приборов уменьшается поступление теплоносителя в радиатор и движение теплоносителя происходит большей частью по замыкающим участкам. В аудитории 204 часть теплоты от радиатора поглощается письменным столом, который загораживает теплообменник.
В результате проведения энергетического аудита помещений корпуса М (второй этаж) Сумского государственного университета был составлен план энергосберегающих мероприятий:
1. Для улучшения протекания теплоносителя по отопительным приборам в помещениях с недостаточным теплопоступлением необходимо произвести сжимы осевых замыкающих участков главного стояка или установить смещённые замыкающие участки меньшего диаметра.
2. Снять лишние секции в радиаторах в тех помещениях, где температура превышает санитарно-гигиенические нормы.
3. Для удаления зарастания в трубопроводах и отопительных приборах произвести промывку системы отопления.
4. Для уменьшения теплопотерь при движении теплоносителя подающий стояк необходимо покрыть тепловой изоляцией.
5. Убрать от радиаторов теплопоглощающие предметы, затрудняющие теплоотдачу.
4. РАСЧЁТ НЕОБХОДИМОЙ ТЕПЛОВОЙ МОЩНОСТИ СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ
4.1 Расчёт сопротивлений теплопередаче ограждающих конструкций
Теплозащитные качества ограждения характеризуют величиной сопротивления теплопередаче R0, которая численно равна падению температуры в градусах при прохождении теплового потока, равного 1 Вт, через 1 м2 ограждения. Общее сопротивление теплопередаче определяем по формуле [3]:
,(4.1)
гдеRВ – сопротивление теплоотдаче внутренней поверхности, м2·К/Вт;
RН – сопротивление теплоотдаче наружной поверхности, м2·К/Вт;
RК – термическое сопротивление ограждающей конструкции, м2·К/Вт.
Сопротивление теплоотдаче внутренней поверхности:
,(4.2)
где – коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, для стен, полов, гладких потолков принимаем [3].
Сопротивление теплоотдаче наружной поверхности:
,(4.3)
где – коэффициент теплоотдачи наружной поверхности ограждающей конструкции, для наружных стен принимаем [3].
Термическое сопротивление ограждающей конструкции RK, с последовательно расположенными однородными слоями определяем как сумму термических сопротивлений отдельных слоёв [2]:
,(4.4)
где – термические сопротивления отдельных слоёв ограждающей конструкции, м2·К/Вт.
Термическое сопротивление отдельного слоя определяем по формуле [3]:
,(4.5)
где – толщина слоя, м;
– коэффициент теплопроводности материала слоя, Вт/(м·К).
Требуемое сопротивление теплопередаче R0тр, м2·К/Вт, определяется по формуле [2]:
,(4.6)
гдеn – коэффициент, учитывающий положение наружной поверхности ограждающих конструкций по отношению к наружному воздуху;
tB – расчётная температура внутреннего воздуха, принимаем равной 18 ºС [2];
tН – расчётная зимняя температура наружного воздуха, принимаем равной для Сум -24 ºС [2];
– нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней ограждающей конструкции, равный для наружных стен общественных зданий 7 ºС;
– коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, принятый ранее равным 8,7 Вт/(м2·К).
Сравниваем значения, полученные в результате расчёта формул (4.1) и (4.6) и в дальнейших расчётах принимаем большее из значений.
... политики в электроэнергетике, совместное участие в развитии новых месторождений и межрегиональных энергетических комплексов, обеспечение политики энергоснабжения, повышение надежности и качества теплоснабжения потребителей, а также снижение затрат на ремонт и перекладку теплосетей. В результате анализа экономической эффективности всех предлагаемых вариантов развития ТЭК НСО предпочтительным ...
... северных регионов за счет возведения двойной оболочки здания с использованием солнечной энергии можно обеспечить до 40% экономии тепла. Учитывая развитие технологий возобновляемой энергетики, с должной долей уверенности можно сказать о реальной возможности создания эффективной системы энергоснабжения удаленных от центральной энергосети сельских домов при условии комбинированного использования ...
... контроля за состоянием окружающей среды, при контроле состояния окружающей среды недостаточно полно используются современные информационные технологии, в связи с чем основные направления совершенствования системы управления охраной окружающей среды в Юго-Западном районе должны быть сосредоточены именно в сфере информатизации данного процесса. 2. Исследование методов оценки загрязнения окружающей ...
... распределения материальных благ и развития промышленного производства (сельского хозяйства, здравоохранения, связи и т. п.). Рис. 8.3. Структура системы управления общественным производством В реализации задачи инновационный менеджмент занимает специфическую и важную роль в установлении критериев и путей развития. 1 – Сбор данных и выделение ошибок. 2 – Анализ последствий ...
0 комментариев