1.2.2 Экологические проблемы энергетики и пути их решения
Воздействие энергетики на окружающую среду разнообразно и определяется видом энергоресурсов и типом энергоустановок. Приблизительно 1/4 всех потребляемых энергоресурсов приходится на долю электроэнергетики. Остальные 3/4 приходятся на промышленное и бытовое тепло, на транспорт, металлургические и химические процессы. Ежегодное потребление энергии в мире приближается к 22 млрд. т. Теплоэнергетика в основном потребляет твердое топливо. Самое распространенное твердое топливо нашей планеты - уголь. И с экологической и с экономической точки зрения метод прямого сжигания угля для получения электроэнергии - не лучший способ использования твердого топлива. При сжигании жидкого топлива с дымовыми газами в атмосферу воздуха поступают: сернистые ангидриды, оксиды азота, окись и двуокись углерода, газообразные и твердые продукты неполного сгорания топлива, соединения ванадия, соли натрия, и др. С точки зрения экологии жидкое топливо менее вредно, чем уголь. Если уровень загрязнения атмосферы при использовании угля принять за 1, то сжигание мазута даст 0,6, а использование природного газа снижает эту величину до 0,2.
1.2.2.1 Парниковый эффект
Повышение концентрации углекислого газа в атмосфере вызывает так называемый парниковый эффект, который получил название по аналогии с перегревом растений в парнике. Роль пленки в атмосфере выполняет углекислый газ. В последние годы стала известна подобная роль и некоторых других газов (СН4 и N2О). Количество метана увеличивается ежегодно на 1 %, углекислого газа - на 0,4%, закиси азота - на 0,2%. Считается, что углекислый газ ответственен за половину парникового эффекта.
1.2.2.2 Загрязнение атмосферы
Негативное влияние энергетики на атмосферу сказывается в виде твердых частиц, аэрозолей и химических загрязнений. Особое значение имеют химические загрязнения. Главным из них считается сернистый газ, выделяющийся при сжигании угля, сланцев, нефти, в которых содержатся примеси серы. Некоторые виды угля с высоким содержанием серы дают до 1 т сернистого газа на 1О т сгоревшего угля. Сейчас вся атмосфера земного шара загрязнена сернистым газом. Идет окисление до серного ангидрида, а последний вместе с дождем выпадает на землю в виде серной кислоты. Эти осадки называют - кислотными дождями. То же самое происходит и после поглощения дождем диоксида азота - образуется азотная кислота [2].
1.2.2.3 Озоновые "дыры"
Впервые уменьшение толщины озонового слоя было обнаружено над Антарктидой.
Этот эффект - результат антропогенного воздействия. Сейчас обнаружены и другие озоновые дыры. В настоящее время заметно уменьшение количества озона в атмосфере над всей планетой. Оно составляет 5-6% за десятилетие в зимнее время и 2-3% - в летнее время. Некоторые ученые считают, что это проявление действия фреонов (хлорфторметанов), но озон разрушается также оксидом азота, которые выбрасываются предприятиями энергетики. Отрицательное влияние атомных электростанций сказывается, прежде всего, на атмосфере. Правда, при нормальной работе АЭС вероятность радиоактивного загрязнения невелика. Но в случае аварии воздействие радиоактивных выбросов носит глобальный характер.
Сегодня глобальная среднегодовая потребность в энергии составляет ~8 трлн. ватт.
Иными словами для обеспечения нужд одного жителя Земли нужно 12 человек обслуживающего персонала.
Если наш образ жизни, будет и дальше так развиваться, как сейчас, то в будущем потребность в энергии станет громадной. Если производство продовольствия будет идти в ногу с ростом населения, то к 2000 г. производство азотных удобрений должно увеличиться в 1 00 раз. Одно лишь это потребует около 20% объёма ныне производимой энергии. Опреснённая вода, которая часто рассматривается как неотъемлемая часть будущего, для своего получения требует громадных затрат энергии.
Среднегодовое потребление энергии увеличивается на 5.7%. Если этот темп сохранится, за следующие 20 лет расход энергии увеличится в 4.5 раза. Основным источником получения энергии в мире дающим 97% её количества является ископаемое топливо, в том числе 38% составляет уголь, 19%-природный газ и 10%- нефть.2% электроэнергии вырабатывается на ГЭС, а другие источники, такие как ядерный распад, древесина и прочие вырабатывают 1 % энергии [3].
Таблица 1.
Энергетические системы, пригодные для использования человеком
№ вида | Энергетические системы |
ТИП 1 (основаны на возобновляемых источниках энергии) | |
1. | На: гравитационных силах; молекулярном движении; движении приливов и волн; движении воздуха; геотермальных силах |
2. | фотосинтезе растений; жизнедеятельности организма |
3. | Фотохимических, фотоэлектрических и термоэлектрических процессах |
ТИП 2 (основаны на возобновляемых источниках энергии) | |
1. | На: сжигании радиационного топлива |
2. | внутриядерных процессах |
3. | биохимическом преобразовании энергии |
4. | водородном топливе |
Всего сказанного выше достаточно для того, чтобы убедиться в необходимости пере хода человечества на новые виды энергии, не связанные со сжиганием традиционного топлива. Для удобства рассмотрения вопросов поиска новых источников энергии кажется целесообразным, прежде всего, все существующие на земном шаре энергетические системы, использование которых осуществляется или потенциально может осуществляться человеком, разделить условно на два типа:
Ø системы, основанные на возобновляемых источниках энергии;
Ø системы, основанные на невозобновляемых источниках.
Каждый тип, в свою очередь, можно подразделить на несколько видов энергетических систем (табл. 1).
Системы, относящиеся к первому виду, малоперспективны, несмотря на их экологическую чистоту. В начале века, по имеющимся оценкам, они смогут удовлетворить мировые потребности лишь на 5 - 10% [4].
Таблица 2 Различные источники энергии, их состояние, экологичность, перспективы развития
Источник энергии | Состояние и экологичность | Перспективы использования |
Уголь | Твердое Химическое загрязнение атмосферы, условно принятое за 1 | Потенциальные запасы 10125 млрд. т, перспективен не менее чем на 100 лет |
Нефть | Жидкое Химическое загрязгнение атмосферы 0, 6 условных единиц | Потенциальные запасы 270-290 млрд. т, перспективен не менее чем на 30 лет |
Газ | Газообразное Химическое загрязгнение атмосферы 0, 2 условных единиц | Потенциальные запасы 270 млрд. т, перспективен на 30 - 50 лет |
Сланцы | Твердое Значит. Количество отходов и трудно устраняемые выбросы | Запасы более 38400 млрд. т, малоперспективен из-за загрязнений |
Торф | Твердое Высокая зольность и эколог. нарушения в местах добычи | Запасы значительны: 150 млрд. т, малоперспективен из-за высокой зольности и экол. нарушений в местах выработки |
Гидроэнергия | Жидкое Нарушение экологич. баланса | Запасы 890 млн. т нефт. эквивалента |
Геотермальная энергия | Жидкое Химическое загрязнение | Неисчерпаемы, перспективен |
Солнечная энергия | Практически неисчерпаем | |
Энергия приливов | Жидкое Тепловое загрязнение | Практически неисчерпаем |
Энергия атомного распада | Твердое | Запасы физически исчерпаемы, экологически опасен |
Схема 1 . Энергетические ресурсы и структура использования
Соотношение используемых энергетических ресурсов в истории человечества менялось с развитием цивилизации в зависимости от истощения исчерпаемых энергоресурсов, возможности использования и экологических последствий. За последние 200 лет можно выделить три этапа:
можно выделить три этапа:
·угольный этап охватывающий весь XIX век и первую половину ХХ века, в это время преобладает потребление угольного топлива;
·нефтегазовый этап со второй половины ХХ века до 80-х годов, на смену углю приходит газ и нефть как более эффективные энергоносители чем твердые;
·начиная с 80-х годов начинается постепенный переход от использования минеральных исчерпаемых ресурсов к неисчерпаемым (энергии Солнца, воды, ветра, приливов и т.д.).
Особо следует сказать о ядерной энергетике. С начала мирового энергетического
кризиса роль атомной энергетики возросла. Но уже в начале 80-х годов рост потребления атомной энергии замедлился. В большинстве стран были пересмотрены планы сооружения АЭС. Это было последствием ряда экологических загрязнений при авариях, особенно в результате Чернобыльской катастрофы. Именно в этот период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики.
... разовая) – 0,01%. 4 Содержание Введение......................................................................................................................4 Глава 1. Межпредметные связи в курсе школьного предмета химии на примере углерода и его соединений.......................................................................5 1.1 Использование межпредметных связей для формирования у учащихся ...
... на лучшее, а готовься к худшему. Исчерпание мировой нефти к 2050 году — это не худший сценарий, а скорее оптимистический, основанный на доверии к имеющейся информации. Которой я лично не доверяю. АМЕРИКА ПРОТИВ РОССИИ Часть 3 НЕФТЯНАЯ НАРКОЗАВИСИМОСТЬ Но может быть, можно без нефти обойтись? Жили же наши деды? Это самый интересный вопрос, который почему-то не всегда правильно понимается. Так ...
0 комментариев