3. ГОМОЛОГИЧЕСКИЕ И АНАЛИТИЧЕСКИЕ ПАРЫ СПЕКТРАЛЬНЫХ ЛИНИЙ

При изменении температуры источника возбуждения спектра (ИВС) значительно изменяется интенсивность спектральных линий, поэтому в качестве аналитических пар спектральных линий используют гомологические спектральные линии.

Спектральные линии, которые с изменением параметров разряда изменяются одинаково, называют гомологическими спектральными линиями.

Относительная интенсивность (R) двух гомологических линий различных элементов не зависит от температуры, а определяется только их концентрацией c1 и с2.

где В – постоянная величина.

Линию сравнения выбирают так, чтобы она принадлежала спектру элемента, содержание которого в пробе не изменяется или зависит только от концентрации анализируемого элемента.

Линии анализируемого элемента и элемента сравнения (внутреннего стандарта) образуют аналитическую пару линий. Относительная интенсивность аналитической пары зависит только от концентрации анализируемого элемента.


4. ПРИНЦИПИАЛЬНАЯ СХЕМА ПРОВЕДЕНИЯ АЭСА

В основе спектрального анализа лежит изучение строения света, который излучается или поглощается анализируемым веществом. Рассмотрим схему эмиссионного спектрального анализа (рис. 1). Для того чтобы вещество излучало свет, необходимо передать ему дополнительную энергию. Атомы и молекулы анализируемого вещества переходят тогда в возбужденное состояние. Возвращаясь в обычное состояние, они отдают избыточную энергию в виде света. Характер света, излучаемого твердыми телами или жидкостями, обычно очень мало зависит от химического состава и поэтому его нельзя использовать для анализа. Совсем другой характер имеет излучение газов. Оно определяется составом анализируемой пробы. В связи с этим при эмиссионном анализе перед возбуждением вещества его необходимо испарить.

Рис 1. Принципиальная схема эмиссионного спектрального анализа:

1 — источник света; 2 — осветительный конденсор; 3 — кювета для анализируемой пробы; 4 — спектральный аппарат; 5 — регистрация спектра; 6 — определение длины волны спектральных линий или полос; 7 — качественный анализ пробы с помощью таблиц и атласов; 8 — определение интенсивности линий или полос;

9 — количественный анализ пробы по градуировочному графику

Испарение и возбуждение осуществляют в источниках света, в которые вводится анализируемая проба. В качестве источников света используют высокотемпературное пламя или различные типы электрического разряда в газах: дугу, искру и др. Для получения электрического разряда с нужными характеристиками служат генераторы.

Высокая температура (тысячи и десятки тысяч градусов) в источниках света приводит к распаду молекул большинства веществ на атомы. Поэтому эмиссионные методы служат, как правило, для атомного анализа и только очень редко для молекулярного.

Излучение источника света складывается из излучения атомов всех элементов, присутствующих в пробе. Для анализа необходимо выделить излучение каждого элемента. Это осуществляют с помощью оптических приборов — спектральных аппаратов, в которых световые лучи с разными длинами волн отделяются в пространстве друг от друга. Излучение источника света, разложенное по длинам волн, называется спектром.

Основными частями спектрального прибора (рис. 2) являются: входная щель S, освещаемая исследуемым излучением; объектив коллиматора О1, в фокальной плоскости которого расположена входная щель S; диспергирующее устройство D, работающее в параллельных пучках лучей; фокусирующий объектив О2, создающий в своей фокальной поверхности Р монохроматические изображения входной щели, совокупность которых и образует спектр. В качестве диспергирующего элемента используют, как правило, либо призмы, либо дифракционные решетки.

http://chemanalytica.com/book/novyy_spravochnik_khimika_i_tekhnologa/03_analiticheskaya_khimiya_chast_II/images/14.files/Image15584.gif

Рис 2. Принципиальная оптическая схема спектрального прибора (λ 1< λ23)

Спектральные аппараты устроены таким образом, что световые колебания каждой длины волны, попадающие в прибор, образуют одну линию. Сколько различных волн присутствовало в излучении источника света, столько линий получается в спектральном аппарате.

Атомные спектры элементов состоят из отдельных линий, так как в излучении атомов имеются только некоторые определенные волны (рис. 3, а). В излучении раскаленных твердых или жидких тел присутствует свет любой длины волны. Отдельные линии в спектральном аппарате сливаются друг с другом. Такое излучение имеет сплошной спектр (рис. 3, в). В отличие от линейчатого спектра атомов, молекулярные спектры испускания веществ, которые не распались при высокой температуре, являются полосатыми (рис. 3, б). Каждая полоса образована большим числом близко расположенных линий.

http://lnktd-opz.narod.ru/sa/0002.png

Типы спектров:

а — линейчатый; б — полосатый; видны отдельные линии, составляющие полосу; в—сплошной.

Наиболее темным местам в спектре соответствует наибольшая интенсивность света (негативное изображение)

Свет, разложенный в спектральном аппарате в спектр, можно рассматривать визуально или зарегистрировать с помощью фотографии или фотоэлектрических приборов. Конструкция спектрального аппарата зависит от метода регистрации спектра. Для визуального наблюдения спектров служат спектроскопы — стилоскопы и стилометры. Фотографирование спектров осуществляют с помощью спектрографов. Спектральные аппараты — монохроматоры — позволяют выделять свет одной длины волны, после чего он может быть зарегистрирован с помощью фотоэлемента или другого электрического приемника света.

При качественном анализе необходимо определить, к излучению какого элемента относится та или иная линия в спектре анализируемой пробы. Для этого нужно найти длину волны линии по ее положению в спектре, а затем с помощью таблиц определить ее принадлежность тому или иному элементу. Для рассмотрения увеличенного изображения спектра на фотографической пластинке и определения длины волны служат измерительные микроскопы, спектропроекторы и другие вспомогательные приборы.

Интенсивность спектральных линий растет с увеличением концентрации элемента в пробе. Поэтому для проведения количественного анализа нужно найти интенсивность одной спектральной линии определяемого элемента. Интенсивность линии измеряют или по ее почернению на фотографии спектра (спектрограмме) или сразу по величине светового потока, выходящего из спектрального аппарата. Величину почернения линий на спектрограмме определяют на микрофотометрах.

Связь между интенсивностью линии в спектре и концентрацией элемента в анализируемой пробе устанавливают с помощью эталонов — образцов, подобных анализируемым, но с точно известным химическим составом. Эту связь обычно выражают в виде градуировочных графиков.



Информация о работе «Атомно-эмиссионный спектральный анализ»
Раздел: Химия
Количество знаков с пробелами: 50848
Количество таблиц: 0
Количество изображений: 10

Похожие работы

Скачать
28072
0
4

... , степень ионизации атомов, диффузионные процессы на оптимальном уровне и т.д. Ввиду многообразия взаимовлияющих факторов при этом часто используют методы математического планирования экспериментов. Сущность метода   Атомно-эмиссионный спектральный анализ – это метод определения химического состава вещества по спектру излучения его атомов под влиянием источника возбуждения (дуга, искра, пламя ...

Скачать
43047
8
2

... их спектральных линий с коррекцией фона и возможных спектральных наложений. Соответственно такие анализаторы отличаются высокой точностью и продуктивностью.[3-7] 2. ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ МЕТОДА В АНАЛИЗЕ ПОЧВ   Определение тяжелых металлов атомно-абсорбционным методом Методика предназначена для выполнения измерений массовой концентрации металлов (марганца, меди, железа, цинка, молибдена) в ...

Скачать
15480
4
1

... -31, ДФС-41) а также импортные квантометры (английские Е-6000, Е-1000, американские ARL - 29500, ARL - 31000 и др.). Эмиссионная фотометрия пламени (пламенная фотометрия) Пламенная фотометрия является одним из вариантов эмиссионного спектрального анализа и основана на измерении интенсивности света, излучаемого возбужденными частицами (атомами или молекулами) при введении вещества в пламя ...

Скачать
29902
2
0

... для анализа, мг 5 – 10 Напряжение сети питания, В 220 Габаритные размеры, мм 800*450*600 Вес не более, кг 45   4. Применение лазерной спектроскопии в анализе объектов окружающей среды   Применение метода лазерной искровой спектроскопии в экологических исследованиях. Проблема загрязнения морей приобретает все более глобальный характер. Прогрессирующее загрязнение морской воды связано со ...

0 комментариев


Наверх