1.4 Свойства растворов катионных полимеров
В последние годы вопросам синтеза и исследования физико-химических свойств катионных полиэлектролитов уделяется большое внимание. Благодаря высокому содержанию ионогенных групп поликатионы широко применяются в различных отраслях народного хозяйства, технике и медицине. Возможные области применения катионных полиэлектролитов: флокулянты, коагулянты, структурообразователи почв, анионообменики, лекарственные препараты, электропроводящие материалы, стабилизаторы эмульсий, пен, фотоматериалы, ингибиторы коррозии, полупроницаемые мембраны, адгезивы, производство бумаги, шампуни, мыла и другие косметические средства, антистатики, комплексообразователи, гомогенные и гетерогенные катализаторы.
В зависимости от расположения атомов азота вдоль полимерной цепи катионные полимеры можно разделить на два больших класса: полиоснования с атомом азота в основной цепи (интегральные) и полиоснования с атомом азота в боковой цепи (пендантные). К первому классу полимеров относятся ионены, полиэтиленимин и полиамидоамины, а второй более обширный класс поликатионов – составляют поливиниламин, поливинилпиридины, полиаминоалкилметакрилаты и другие типы катионных полимеров.
Наличие в основной или боковой цепи реакционных первичных, вторичных и третичных аминогрупп путем модификации позволяет получать сильные полиэлектролиты, полиамфолиты бетаинового типа, полимыла и др.
Поведение растворов катионных полиэлектролитов в значительной степени зависит от ионного окружения, рН среды, температуры, состава смешанного растворителя и т.д. На конформацию полиэлектролитов влияют также гидрофобные взаимодействия, которые в определенных условиях становятся преобладающим фактором, контролирующим состояние макромолекул в растворе.
1.5 Амфотерные полиэлектролиты
Высокомолекулярные соединения, содержащие в цепи функциональные группы кислотного и основного характера, называются полиамфолитами. К ним относится большинство полимеров биологического происхождения – белки и нуклеиновые кислоты. Однако в отличие от синтетических аналогов биополимеры обладают специфическим строением, функциями и свойствами, которые в полной мере проявляются лишь в живом организме. Тем не менее, ряд свойств природных полимеров удается моделировать при помощи синтетических амфотерных макромолекул.
Широко и разнообразно применение практическое применение амфотерных полиэлектролитов в различных областях народного хозяйства. Амфотерные ионообменники обладают высокой сорбционной емкостью по отношению к ионам металлов и позволяют проводить селективное разделение. Благодаря высокому содержанию функциональных групп они служат эффективными флокулянтами и коагулянтами. Полимерные амфолиты могут выступать в роли катализаторов, моделирующих функцию биокатализаторов – ферментов, носителей лекарственных препаратов – полимерных депо, микрокапсул, латексов и т.д.
1.5.1 Гидродинамические свойства и молекулярные характеристики полиамфолитов в растворах
В зависимости от изменения рН среды полиамфолиты проявляют свойства как поликислот, так и полиоснований. Значение рН, при котором средний заряд макромолекул равен нулю, соответствует изоэлектрической точке полиамфолита (ИЭТ). Классическим методом установления ИЭТ является электрофорез при разных рН с экстраполяцией к нулевому заряду.
Можно ожидать, что в области рН, значительно удаленной от ИЭТ, в макромолекуле будет появляться избыток зарядов одного знака. Это, в свою очередь, разворачивает цепные молекулы и увеличивает их размеры. При приближении к ИЭТ взаимное притяжение противоположно заряженных групп должно приводить к относительно плотному сворачиванию полиионов. Характерная особенность большинства полиамфолитов – ухудшение растворимости в воде вблизи ИЭТ.
По поведению вблизи ИЭТ полиамфолиты можно разделить на два типа: полиамфолиты, водорастворимые при любых значениях рН, и полиамфолиты, которые вблизи ИЭТ коагулируют и дают область нерастворимости. Наличие или отсутствие растворимости определяется концентрацией биполярных ионов (цвиттерионов) в ИЭТ. Если в пределе полимерная молекула представляет собой строение цвиттериона, то данный полиамфолит водорастворим во всем интервале изменения рН. Если же макромолекула в ИЭТ не заряжена (т.е. концентрация биполярных ионов очень низкая), то для таких полиамфолитов обнаруживается область нерастворимости. В свою очередь концентрация цвиттерионов зависит от константы диссоциации кислотных и основных составляющих сополимера.
Равновесие ионов водорода в растворах синтетических полиамфолитов детально не анализировалось. Причина этого заключается в том, что вблизи ИЭТ макромолекула в целом электронейтральна и имеет очень компактную конформацию. При приближении к ИЭТ труднее титровать ту или иную группу, несмотря на изменение рН среды на две единицы. Однако по мере преобладания положительного или отрицательного зарядов происходит разворачивание цепи, и дальнейшее титрование кислотных и основных групп значительно облегчается.
Для амфотерных полиэлектролитов вблизи ИЭТ возможно увеличение размеров клубка в присутствии низкомолекулярных электролитов. В кислой и щелочной областях молекулы полиамфолита веду себя как поликатионы и полианионы соответственно – вязкость полиамфолита () падает с ростом ионной силы раствора (), тогда как в ИЭТ наблюдается противоположный эффект – вязкость полиамфолита возрастает с увеличением . Такой характер изменения () с ростом ионной силы обусловлен тем, что низкомолекулярный электролит, экранируя противоположные заряды на макромолекулах, ослабляет их взаимодействие и приводит к разворачиванию клубка.
Не менее интересно влияние добавок органического растворителя на поведение водорастворимых полиамфолитов вблизи ИЭТ. Заметный рост при увеличении доли органического растворителя в бинарной смеси, вероятно связан с уменьшением диэлектрической проницаемости и улучшением качества растворителя по отношению к гидрофобной части макромолекулы.
... кислоты / акриловой кислоты- ионы Sr2+”. Работа магистранта Темергалиевой Кумысжан посвящена исследованию взаимодействия нового полиамфолита на основе этил 3-аминокротоната и акриловой кислоты (ЭЭАКК-АК) с ионами стронция. Полиамфолит на основе этил 3-аминокротоната и акриловой кислоты (ЭЭАКК-АК) был синтезирован реакцией присоединения Михаэля с радикальной последующей полимеризацией. Этил 3- ...
0 комментариев