1.         Дисперсионный анализ по одному признаку для проверки равенства нескольких средних

Во многих случаях практики интерес представляет вопрос о том, в какой мере существенно влияние того или иного фактора на рассматриваемый признак [9]. В данном случае фактором является степень поражения почек, а признаком - УК.

Научное обоснованное решение подобной задачи при некоторых предположениях составляет предмет дисперсионного анализа , введенного математиком- статистиком Р. А. Фишером.[10]

Статистическая модель

Выборки производятся из нормальных совокупностей. Первая выборка производиться из совокупности со средним, вторая - со средним  , k-я из совокупности со средним . Все наблюдения независимы. Будем считать распределение данной мне совокупности нормальным.

Гипотезы №1.

Н0 : =  =…=

Н1: не все средние равны. все средние равны.

Критическая область.

Верхняя 5%-ная область Fk-1.N-k -распределения. В нашем случае F4,474 -распределения, так как k=4, а =n1 + n2 + n3 + n4 + n5 =479. Эта область определяется неравенством F>2.37. ( Определяется по таблице, см. Таблица А.4а на стр. 334 "Справочника по вычислительным методам статистики" Дж. Поллард [6] )

Вычисление значения критериальной статистики

Будем рассматривать исходные данные, представленные Таблицей №1.

Таблица №1. Значения УК в зависимости от тяжести ГН.

 .Нет нефрита

Выборка объема

n1= 210

Слабый нефрит

Выборка объема n2= 101

Средний нефрит

Выборка объема n3= 98

Нефротический синдром

Выборка объема

n4 = 45

 Почечная недостаточность

Выборка объема

n5 = 25

36 11 7 10 20
38 35 27 5 20
40 37 6 6 21
31 15 5 15 24
33 40 40 20 3
33,8 0 5 25 12
37 33 45 28 10
38 33 45 32 0
33 5 46 46 18,2
37 40 45 33 46
48 25 24 44 10
40 33 24 25 0
42 50 43 22,5 20
35 25 24,5 24,5 30,4
15 20 20,5 38 0
35 50 9 12 33,3
48 50 12 54,7 14,7
45 18 32 20,7 34,1
38 20 43 0 22,4
15 33 35,5 26,1 17,8
13 43 44 11 33,5
40 10 50 11,7 29,6
40 12 34 34,4 13,6
38 23 12 0 35
32,7 34 0 0 37
60 30 25,1 42
50 35 22,5 32,3
51 22 31 16
45 22,2 33 32,5
25 20 41,9 39,3
33 21 41,7 40,2
33 22 37,1 0
39 10 33,4 39,1
35,8 37,4 33 37,7
41,7 22,4 34,3 33,5
38,2 35 33 43,8
37,4 37,3 36,9 16
10 39,6 41 16
37,9 0 33 31
39,3 32,8 32,15 52
37,2 24 38,8 51
37,8 25 48,1 33,5
49,1 38 0 48
36,15 29 0 27
43,8 32 26,6 48
40 32 52,8
40 20 27
36 32,3 13,6
45 10 10
43,5 33,9 19,5
35 45,74 51,2
35 0 40,4
19,5 49,1 46,05
24,2 38 0
33 0 25,2
40,4 43,5 28
30 32,3 27
36 41 35
10 40 29
25 29,7 50
30 30 20
32 27,6 0
31 21,4 15,6
45 23 35
20 34,3 0
45 18 46
15 50,4 59,2
30,4 48,2 0
50 37,3 22,5
46 35 0
35 25 24
15 20 45
18 38 28,9
28 47,5 30,5
36,7 37,9 45,5
47,8 40,3 43
39,2 60 34,7
36,5 34,1 32,6
32 46,7 38,4
45,7 39 37,15
46,9 31,4 39
15,6 32 52,15
34,1 42 52,2
44,7 43,8 0
26,5 39,1 0
36,6 16 0
30,3 26,5 33
47 43 43
50 36,9 46,6
52,2 29,4 59,3
38,5 30,6 0
41 35,6 15,5
40 38,7 21,2
45 38,2 22,8
25,5 26,1 28,3
27,7 43,2 28,15
22,5 46 38,5
45 35,6 26
33 32,4
48,3 50
47,5 50
32
50
35,6
33,5
56,9
28,9
40
35,2
42,5
50
46,2
52,7
49,1
38
33,7
32,6
30
28,9
44,4
48,2
38,15
42
28,4
33,5
39,4
38,6
34,3
37,7
27,3
39,2
29,2
39,2
33,5
18
31,2
23,4
36,9
57,3
45
45,3
16,5
34,9
43,1
30,8
0
34,5
28
16
28,9
23
27
41,6
43,4
36
49
25
41,5
35,5
35
33,1
41,7
39,15
30,8
45,7
35,4
35,8
27
19,5
29,4
33,3
36,6
42,6
30
36,1
43
33,3
28,7
28,7
45,1
31,8
33
39,1
29
46,7
41,05
29,9
50
47
34,4
11
20,6
36,6
38,6
29,48
25
0
38
34,7
38,2
43,8
40,3
38,5
60
50
36
55
33,5
25,1
24,8

Всего:Т1=7502,38

Т2=3157,44

Т3=2819,55

Т4=1223,50

Т5=505,60

Т = Т1 + Т2 + Т3 + Т4 + Т5

Т=15208,47, Т2 = 231297559,74, N = 479

Средние значения выборок:

=35,6

= 31,1

= 28,7

 = 26,38

= 19,8

 

Возведем в квадрат значение всех наблюдений и просуммируем их [6].

Вычисляем:


=567988,11

Общая сумма квадратов будет следующей:

- /N = 85112,2

Находим сумму квадратов между выборками:

(/n1 +….+/nk ) – T2/N = 8470,35

Теперь можно заполнить таблицу дисперсионного анализа [6].

Таблица №2. Дисперсионный анализ по одному признаку.

Компонента дисперсии

(1)

Сумма квадратов

(2)

Степень свободы

(3)

Средний квадрат

(4)=(2)/(3)

Между выборками

()-/N

k-1 (определяется делением)
Остаточная (определяется вычитанием) N-k
Полная

N-1 -----

Получаем:

Таблица №2а. Дисперсионный анализ по одному признаку. Результаты.

Компонента дисперсии

(1)

Сумма квадратов

(2)

Степень свободы

(3)

Средний квадрат

(4)=(2)/(3)

Между выборками 8470,35 4 2117,59
Остаточная 76641,85 474 161,69
Полная 85112,2 478 -----

Значение критериальной статистики равно:


F = средний квадрат между выборками / остаточный средний квадрат = 2117,59 / 161,69 = 13,09

Сравним F и Fкритич : 13,09>2,37

Вывод. Следовательно, мы отвергаем гипотезу Н0 ,то есть можно предположить, что при 5%-ном уровне значимости УК в крови больных СКВ зависит от степени тяжести поражения почек.

Мы не знаем, какое распределение имеют наши выборки. Описанный метод применяется , как это было описано в статистической модели, для нормальных совокупностей. В связи с этим будет правомочно применить непараметрический метод для выяснения равенства нескольких средних.


Информация о работе «Анализ зависимости между уровня комплемента в крови больных системной красной волчанкой и степенью тяжести поражения почек»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 25617
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
112690
2
0

... B8 и HLA DR3. Важно отметить, что имеется связь между HLA B8, HLA DR3 и другими аутоиммунными заболеваниями: СКВ, миастенией, язвенным колитом. При HBsAg-положительном хроническом гепатите не выявлены ассоциация между антигенами гистосовместимости и HBs-антигенемией, а также генетические факторы, которые могут вызвать дефект клиренса вируса гепатита В. При вирусных поражениях сенсибилизированные к ...

Скачать
902914
1
0

... ревматизма обусловила значительное снижение заболеваемости — до 0Д8 на 1000 детского населения. В разработку проблемы детского ревматизма внесли большой вклад отечественные педиатры В. И. Молчанов, А. А. Кисель, М. А, Скворцов, А. Б. Воловик, В. П. Бисярина, А. В. Долгополова и др. Эпидемиология, Установлена связь между началом заболевания и перенесенной стрептококковой инфекцией, в основном в ...

Скачать
324585
0
0

... на его течение профессиональные вредности и стрессовые ситуации. Все это необходимо учитывать при диагностике и лечении атопического дерматита у пациентов разных возрастных группК л и н и ч е с к и е ф о р м ы а т о п и ч е с к о г о д е р м а т и т а. Единой классификации форм атопического дерматита в литературе нет. Многие авторы, в зависимости от возраста больных выделяют несколько форм ...

Скачать
383617
0
0

... агент в месте его внедрении. На МАС, как правило, накладывается ГАС, образованный развивающимися общими явлениями. Наоборот, ГАС вторично влияет на МАС с помощью нейрогуморальных механизмов (например, антивоспалительных гормонов). Шок (англ. shock – удар) – патологический процесс, возникающий при действии на организм сверхсильных патогенных раздражителей и характеризующийся фазным нарушением ...

0 комментариев


Наверх