7. Большая размерность системы. Эта особенность системы обусловливает потребность в специальных способах построения и анализа моделей.
1.2 Понятие математической модели сложной системыСоставной характер сложной системы диктует представление ее модели в виде тройки <A, S, Т>, где А – множество элементов (в их число включается также внешняя среда); S – множество допустимых связей между элементами (структура модели); Т — множество рассматриваемых моментов времени. Эти понятия могут быть формализованы разными способами. В качестве Т обычно выбирают множество [0, Т0) или [t0; T0), T0<∞. В каждый момент tÎТ в множестве А выделяется конечное подмножество Аt = (A1t, A2t, ..., Akt)ÎA элементов, из которых в этот момент состоит модель, а в множестве S – подмножество StÌS, указывающее на то, какие именно связи реализованы в момент t. Следовательно, допускается как переменность состава сложной системы, так и переменность ее структуры.
Основной задачей теории СС считается разработка методов, позволяющих на основе изучения особенностей функционирования и свойств отдельных элементов, анализа взаимодействия между ними получить характеристики системы в целом. Приведенная выше общая модель отвечает данной задаче – она построена в виде совокупности моделей элементов и связей между ними. Рассмотрение объекта материального мира как системы, состоящей из взаимодействующих элементов, построение математической модели для нее и исследование ее свойств методом моделирования составляет сущность системного подхода. Таким образом, системный анализ представляет собой научную дисциплину, содержащую совокупность методов и приемов построения, исследования и эксплуатации математических моделей СС.
В области естественных наук наиболее распространенными являются два вида моделирования – физическое и математическое.
Процесс физического (аналогового) моделирования состоит в изучении системы посредством анализа некоторого макета, сохраняющего физическую природу системы. Примером является модель летательного аппарата, исследуемая в аэродинамической трубе. Параметры эксперимента при этом выбирают из соотношений подобия. Аналоговое моделирование основано на указанных выше возможностях описывать разнородные явления и процессы одними и теми же уравнениями. Эти уравнения воспроизводятся обычно с помощью специально подобранных (в соответствии с уравнениями) схем, чаще всего, электрических. Искомые характеристики для исследуемой системы получаются путем измерения на модели соответствующих величин. Переработка информации в такой модели носит параллельный характер и реализуется в форме процесса, происходящего в собранной схеме.
Однако модели физического типа имеют ограниченную сферу применения. Не для всяких явлений и объектов могут быть построены физические аналоги. Достаточно указать на радиолокационные станции, вычислительные центры, организационные системы, производственные процессы и т. п.
Математическое моделирование основано на том факте, что различные изучаемые явления могут иметь одинаковое математическое описание. Хорошо известным примером служит описание одними и теми же уравнениями электрического колебательного контура и пружинного маятника. Математическая модель концентрирует в себе записанную в форме математических соотношений совокупность наших знаний, представлений и гипотез о соответствующем объекте или явлении. Поскольку знания эти никогда не бывают абсолютными, а в гипотезах иногда намеренно не учитывают некоторые эффекты (например, влияние силы трения в механике, потери на тепло в электротехнике и т. п.), модель лишь приближенно описывает поведение реальной системы.
Основное назначение модели – сделать возможными некоторые выводы о поведении реальной системы. Наблюдения над реальной системой (натурные эксперименты) в лучшем случае могут дать материал лишь для проверки той или иной гипотезы, той или иной модели, поскольку они представляют собой источник информации ограниченного объема о прошлом этой системы. Модель допускает значительно более широкие исследования, результаты которых дают нам информацию для прогнозирования поведения системы, характера ее траектории. Правда, чтобы обеспечить эти и другие возможности, приходится решать проблему соответствия (адекватности) модели и системы, т. е. проводить дополнительное исследование согласованности результатов моделирования с реальной ситуацией.
Математические модели строят на основе законов и закономерностей, выявленных фундаментальными науками: физикой, химией, экономикой, биологией и т. д. В конечном счете, ту или иную математическую модель выбирают на основе критерия практики, понимаемого в широком смысле. Математическая модель отображает записанную на языке математических отношений совокупность наших знаний, представлений и гипотез о соответствующем объекте или явлении. Для сложных систем нельзя получить абсолютно подобных математических моделей. Путем формализации системы получается упрощенная модель, отражающая основные ее свойства и не учитывающая второстепенных факторов.
Таким образом, математическая модель CC – это совокупность соотношений (формул, неравенств, уравнений, алгоритмов), определяющих выходные характеристики состояний системы в зависимости от ее входных параметров и начальных условий. Другими словами, ее можно рассматривать как некоторый оператор, ставящий в соответствие внутренним параметрам системы совокупность внешних откликов. После того, как модель построена, необходимо исследовать ее поведение.
С усложнением изучаемых объектов использование аналитических методов для построения и анализа моделей возможно лишь в мало интересных для практики случаях. Выход состоит в переходе к машинным реализациям математических моделей (машинным моделям). При этом на компьютер возлагается как работа по воспроизведению динамики изучаемой модели (имитация ее траекторий), так и по проведению экспериментов с ней.
Таким образом, в процессе моделирования исследователь имеет дело с тремя объектами: системой (реальной, проектируемой, воображаемой); математической моделью системы; машинной (алгоритмической) моделью. В соответствии с этим возникают задачи построения математической модели, преобразования ее в машинную и программной реализации машинной модели. В процессе решения этих задач исследователь получает белее полное и структурированное представление об изучаемой системе, разрабатывает различные варианты модели, отвечающие разным сторонам функционирования системы и их структурных преобразований. Однако основные проблемы исследования систем на машинных моделях сводятся к получению качественной картины поведения модели, а также необходимых количественных характеристик. При этом исследователь вправе использовать не только информацию, содержащуюся в машинной модели, но и информацию, полученную им на этапе создания модели.
1.3 Классификация математических моделей сложной системыМатематические модели можно классифицировать по различным признакам. Если исходить из соотношений, которые выражают зависимости между состояниями и параметрами СС, то различают следующие модели:
- детерминированные, когда при совместном рассмотрении этих соотношений состояние системы в заданный момент времени однозначно определяется через ее параметры, входную информацию и начальные условия;
- стохастические, когда с помощью упомянутых соотношений можно определить распределения вероятностей для состояний системы, если заданы распределения вероятностей для начальных условий, ее параметров и входной информации.
По характеру изменения внутренних процессов выделяют
- непрерывные модели, в которых состояние СС изменяется в каждый момент времени моделирования;
- дискретные модели, когда СС переходит из одного состояния в другое в фиксированные моменты времени, а на (непустых) интервалах между ними состояние не изменяется.
По возможности изменения во времени своих свойств различают
- динамические модели, свойства которых изменяются во времени;
- статические модели, не изменяющие своих свойств во времени.
Если при классификации исходить из способа представления внутренних процессов для изучения СС, то модели разделяются на аналитические и имитационные.
Для аналитических моделей характерно, что процессы функционирования элементов СС записываются в виде некоторых математических схем (алгебраических, дифференциальных, конечно-разностных, предикатных и т.д.). Аналитическая модель может исследоваться одним из следующих способов: аналитическим, когда стремятся получить в общем виде явные зависимости для искомых величин; численным, когда, не имея общего решения, удается найти частное решения или некоторые свойства общего решения, например, оценить устойчивость, периодичность, и т.п.
В имитационных моделях (ИМ) моделирующий алгоритм приближенно воспроизводит функционирование элементов СС во времени, причем элементарные явления, составляющие динамический процесс, имитируются с сохранением логической структуры и последовательности протекания во времени. Сущность этого метода моделирования обеспечивается реализацией на ЭВМ следующих видов алгоритмов: отображения динамики функционирования элементов СС, обеспечения взаимодействия элементов СС и объединения их в единый процесс; генерация случайных факторов с требующимися вероятностными характеристиками; статистической обработки и графической презентации результатов реализации имитационного эксперимента (ИЭ). Моделирующий алгоритм позволяет по исходным данным, содержащим сведения о начальном состоянии процесса и его параметрах, получать информацию о состоянии СС в произвольный момент времени.
Имитационные модели в большинстве случаев – это динамические (обязательно), стохастические, дискретные модели.
1.4 Предпосылки для имитационного моделирования сложной системыБольшинство исследователей считает, что следует выбрать имитационный метод для изучения сложных систем по следующим причинам.
Не существует законченной постановки задачи исследования. Каждый коллектив разработчиков математической модели определяет объект собственных исследований. Каждый раз по-новому вносятся предположения о природе взаимодействующих процессов, обсуждаются факторы, не учитываемые в модели, строится критерий качества функционирования. Как правило, для ИМ задача ставится значительно шире.
Сложность и трудоемкость аналитического аппарата. Для описания отдельных элементов системы подходит различный математический аппарат: теория массового обслуживания, конечно-разностные схемы, булева алгебра в контексте теории графов. Однако возможное количество исходных уравнений и неравенств представляется чрезмерно большим для удовлетворительного решения. Кроме того, известно мало случаев одновременного использования нескольких математических методов в рамках одной задачи.
Необходимость наблюдения за поведением компонентов системы в динамике. Специалистам недостаточно иметь усредненные оценки характеристик функционирования системы. Представляет также интерес временная последовательность возникновения узких мест, эффективность мероприятий по их ликвидации, внесение различных управлений в работу системы и т.д.
Экономическая нецелесообразность постановки натурных экспериментов. Любое исследование сложной системы является дорогостоящим мероприятием. При внесении неудачных изменений в работу реального объекта могут пострадать люди, что вызывает социальную напряженность. Проектирование же новых систем связано с большими материальными затратами. Поэтому в большинстве случаев решения принимаются на основе опыта специалистов предметной области без сотрудничества с научными коллективами. Имитация должна служить для предварительной проверки новых стратегий перед принятием решения в реальной системе.
Необходимость точного отображения функционирования компонентов системы. Аналитическая модель, как правило, не соответствует структуре сложной системе. Следовательно, изучение некоторого периода ее работы потребует разработки отдельной аналитической модели. При имитационном моделировании подобная задача тривиально решается путем сохранения и восстановления промежуточного состояния системы во внешней памяти ЭВМ.
Использование ИМ в качестве тренажера. При подготовке специалистов и освоении правил принятия решений на ИМ может обеспечиваться возможность приобретения новых навыков в управлении системой.
Однако при имитационном моделировании сложных систем несмотря на перечисленные достоинства может возникнуть ряд существенных проблем. Разработка хорошей ИМ часто обходится дороже создания аналитической модели и требует наличия квалифицированных специалистов и больших затрат времени. Иногда может показаться, что ИМ точно отражает реальное положение дел в моделируемой системе, а в действительности это не так. Причем к неверному решению могут привести свойственные именно имитации особенности. При использовании ИМ требуется применять нестандартные методы статистического анализа данных, что усложняет исследование. Преодоление перечисленных выше проблем лежит на пути создания программно-технологического инструментария, позволяющего автоматизировать этапы построения ИМ и тем самым ускорить сроки их исследования.
1.5 Технологические этапы машинного моделирования сложной системы... 2-3 Поиск литературы 7 1 7 2-4 Разработка модели разветвленной СМО 6 1 6 3 Поиск литературы завершен 3-6 Изучение литературы по теории массового обслуживания 10 1 10 4 Модель разработана 4-5 Разработка алгоритма программы 10 1 10 5 Алгоритм программы разработан 5-7 Выбор среды программиро-вания и создание программы 30 1 ...
... воздуха на входе и активное сопло приводит к некоторому расширению зоны максимального съема (до 35-55°), что имеет существенное значение при обработке криволинейных поверхностей. 6. КАЧЕСТВО ПОВЕРХНОСТНОГО СЛОЯ ПОСЛЕ СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ Состояние поверх костного слоя после механических и физико-механических методов обработки характеризуется в основном параметрами шероховатости, ...
... и каналов, а также механизма обслуживания используется алгоритмы генерирования случайных последовательностей. В ходе выполнения курсовой работы разработана модель системы обслуживания робототехнического комплекса производства деталей ЭВА. На данной модели возможно проанализировать эффективность СМО при различных дисциплинах очереди: в порядке поступления заявок (бесприоритетное обслуживание), с ...
... называемые правила бизнеса) реализуются прикладными программами на клиентских установках (RDA-модель) или на сервере приложений (AS-модель). 2. Автоматизированные системы сбора, хранения и анализа информации Автоматизированные информационные системы (АИС) относятся к классу сложных систем, как правило, не столько в связи с большой физической размерностью, сколько в связи с многозначностью ...
0 комментариев