4 Дослідження впливу водневої обробки на розрядні характеристики сплаву ZrCrNi
Оптимізовано умови і встановлено вплив механо-хімічного помелу та фазово-структурного стану сплаву на розрядні характеристики сформованих на його основі металогідридних електродів.
Помел у планетарному млині є високопродуктивним способом подрібнення матеріалів, однак у випадку застосування його для отримання порошків електродних матеріалів існують вади, пов’язані зі зниженням максимальної розрядної ємності.
Таблиця 5. Умови та фазовий склад продуктів взаємодії у системі ІМС
ZrCrNi-Н2
| Умови взаємодії | Фазовий склад (ст. тип) | Параметри ґратки, нм | |||||||||||||||
| Режим | Tмакс, °C | а | b | с | |||||||||||||
| Вихідний сплав | ZrCrNi (C14) Zr7Ni10, Zr9Ni11,Cr - сліди | 0,50124(8) | - | 0,8214(2) |
| ||||||||||||
ГД | 610 | ZrCrNiНх (C14) e-ZrHx Cr - сліди | 0,5286(2) 0,3489(3) | - - | 0,8620(8) 0,4530(7) |
| ||||||||||||
ДР | 270 | ZrCrNi (C14) d-ZrHx, Cr - сліди | 0,5013(2) | - | 0,8209(4) |
| ||||||||||||
ДР | 530 | ZrCrNi (C14) Zr7Ni10, Cr - сліди | 0,50077(8) | - | 0,8211(2) |
| ||||||||||||
ДР | 950 | ZrCrNi (C14) Zr7Ni10 Cr - сліди | 0,50181(7) 1,2380(9) | - 0,9211(7) | 0,8224(2) 0,9193(6) |
| ||||||||||||
ГД | 750 або 610, t=4-5 год | e-ZrHx ZrNi3 Cr | 0,3500(1) 0,5309(2) 0,28853(2) | - - - | 0,4493(3) 0,4298(3) - |
| ||||||||||||
ДР | 950 | ZrCrNi (C15) ZrCrNi (C14) ZrNi Cr | 0,7097(1) 0,5014(3) 0,3261(2) 0,28853(4) | - - 0,9972(6) - | - 0,8167(6) 0,4094(3) - |
| ||||||||||||
ГД | 810 | e-ZrHx Cr Zr2Ni7 - сліди | 0,3502(2) 0,28845(6) | - - | 0,4482(3) - |
| ||||||||||||
ДР | 950 | ZrCrNi (C15) ZrCrNi (C14) ZrNi Cr Zr9Ni11 - сліди | 0,70955(8) 0,5012(5) 0,3267(3) 0,28847(6) | - - 0,9894(7) - | - 0,819(1) 0,4108(4) - |
| ||||||||||||
ГД | 950 | e-ZrHx Cr Zr2Ni7, Zr2Ni - сліди | 0,3500(2) 0,28836(6) | - - | 0,4476(3) - |
| ||||||||||||
ДР | 660 | Zr7Ni10 ZrNi Cr ZrHx, Zr2Ni - сліди | 1,235(2) 0,3253(4) 0,28836(6) | 0,9168(7) 0,992(1) - | 0,9183(7) 0,4117(5) - |
| ||||||||||||
ДР | 950 | ZrCrNi (C15) ZrCrNi (C14) ZrNi Cr | 0,7097(1) 0,5006(4) 0,3265(2) 0,28852(3) | - - 0,9945(8) - | - 0,821(2) 0,4107(4) - |
| ||||||||||||
На нашу думку, причина погіршення експлуатаційних характеристик зумовлена напруженнями, які виникають у матеріалі після помелу, та з частковими аморфізацією та диспропорціонуванням сплаву. На це вказує поява гало й розширення ліній на дифрактограмі меленого сплаву та сліди продуктів диспропорціонування, зокрема виділень хрому . Оптимізація умов помелу полягала у зниженні частоти обертання млина (табл. 6), що запобігає аморфізації та диспропорціонуванню сплаву .
Таблиця 6. Умови подрібнення та розрядні характеристики металогідридних електродів з композиту ZrCrNi+Ni
Умови помелу | Сплав-звязка, мас. частки | Обробка | N, кількість | Iр, мА/г | Смакс,мА·год/г | |
н, об/хв | ф, хв | |||||
400 | 15 | 2:1 | - | - | 25 | 172 |
300 | 20 | 2:1 | +1 | 1 | 25 | 240 |
100 | 30 | 2:1 | - | 4 | 50 | 228 |
100 | 30 | 2:1 | -2 | 20 | 50 | 264 |
100 | 30 | 2:1 | +3 | 2 | 50 | 293 |
100 | 30 | 2:1 | +4 | 6 | 50 | 246 |
Примітки: 1заряд при 80 °С, Із=50 мА·год/г, ф=8 год; 2сплав попередньо подрібнений у ступці; 3ГДДР =5 МПа, ГД при 610°С, ДР при 950°С; 4 ГДДР =5 МПа, ГД при 810 °С, ДР при 950 °С.
Сплави після механохімічного здрібнення потребують малої кількості циклів активації, однак володіють нижчою ємністю. Для усунунення негативних наслідків помелу проводили гомогенізуючу водневу обробку сплаву (процес ГДДР): нагрів до 610 °С у водні з наступним нагрівом до 950 °С у вакуумі.
Внаслідок застосування такого комплексного підходу отримали високу активованість електродів без зниження їх розрядної ємності. Високий ступінь гомогенності сплаву забезпечує, на нашу думку, його високу розрядну ємність. Такий помел у механічному млині у водні запобігає оксидуванню порошку сплаву, що забезпечує високу активованість електроду.
Електроди, виготовлені з гомогенізованого сплаву зі структурою типу С14 вже після другого циклу заряду-розряду досягають ємності 260 мА·год/г, тобто близько 90% від максимальної (293 мА·год/г). Коли основою електродного сплаву є фаза зі структурою типу С15, отримана при нагріві у водні до 810 °С, а потім до 950 °С у вакуумі, то 90% від максимальної ємності досягається після 8 циклів, що становить 256 мА·год/г. Зниження максимальної розрядної ємності зумовлене формуванням бінарних ІМС сполук системи Zr-Ni.
Таким чином, комплексне застосування процесу ГДДР та механохімічної обробки дозволяє зменшити кількість циклів для активації електродів з 20 до 2 (рис. 6, крива 5). На нашу думку, отриманий результат пояснюється впливом двох факторів: відновленням поверхневих оксидних плівок та гомогенізацією сплаву внаслідок проведення ГДДР.
1. Встановлено закономірності ГДДР в сполуці ZrCr2 двох структурних модифікацій (типу MgZn2 та MgCu2). Показано, що диспропорціонування ZrCr2 (структура типу MgZn2) починається за =3 МПа з утворенням гідриду вихідної фази та виділенням хрому і гідриду цирконію. Повністю сплав диспропорціонує за витримки 3 год при 860 °С, або за початковому тиску водню =5 МПа. Нагрів у вакуумі продуктів часткового диспропорціонування сполуки ZrCr2 приводить до відновлення вихідної фази. Аналогічна обробка продуктів повного диспропорціонування завершується утворенням сполуки ZrCr2 зі структурою типу MgCu2. У випадку сполуки ZrCr2 структурного типу MgCu2 вона розпадається на e-ZrHx та Cr за температур 820 та 775 °С (=3 та 5 МПа відповідно) з подальшим відновленням вихідної фази нагрівом продуктів диспропорціонування у вакуумі.
2. Вперше показано, що заміщення цирконію на титан зменшує швидкість фазових перетворень у сполуці ZrCr2 при нагріві у водні. Повний розпад сплаву Zr1-xTixCr2 на e-ZrHx, ТіНх та Cr має місце після 4 і 17 год витримки (для x=0,1 і 0,2 відповідно) при 950 °С за =5 МПа.
3. Вперше встановлено, що фазові перетворення у системі ZrCrNi-H2 при =5 MПa розпочинаються при 535 °С з утворенням гідриду вихідної фази Лавеса зі структурою типу MgZn2, Cr та e-ZrHx. Після нагріву до 675 °С утворюються e-ZrHх, ZrNi3 та Cr; за температури вище 790 °С: e-ZrHх, Zr2Ni7 та Cr; вище 820 °С: e-ZrHх, Zr2Ni7, Zr2Ni та Cr.
4. В залежності від максимальної температури обробки отримано сплав з різним співвідношенням основних та вторинних фаз: фази Лавеса зі структурою типу MgZn2 та MgCu2, ZrNi, Cr, Zr9Ni11 і Zr7Ni10. Встановлено, що обробка у водні гомогенізує сплав ZrCrNi.
5. Покращення активованості металогідридних електродів на основі сполуки ZrCr2 зумовлене сумісним впливом двох процесів – відновленням оксидних плівок у водні та гомогенізацією внаслідок застосування ГДДР.
6. Оптимізовано параметри проведення процесу ГДДР та механохімічного помелу сплаву ZrCrNi у водні та видано рекомендаціїї щодо практичного впровадження отриманих результатів.
1. Bulyk I.I., Basaraba Yu. B., Trostianchyn A.M. Features of the HDDR process in ZrT2 (T = Cr, Mn, Fe, Co) compounds // J. Alloys and Compounds. - 2004. -Vol.367. - P. 283-288.
2. Булик І.І., Басараба Ю.Б., Тростянчин А.М. Вплив титану на спричинені воднем перетворення у фазах Лавеса на основі цирконію // Фіз.-хім. механіка матеріалів. - 2004. - № 6. - С. 67-72.
3. Bulyk I.I., Basaraba Yu. B., Dovhyj Ya. O. Influence of Ti on the hydrogen-induced phase-structure transformations in the ZrCr2 intermetallic compound // Intermetallics. - 2006. – Vol.14. - P. 735-741.
4. Bulyk I.I., Basaraba Yu. B., Trostianchyn A.M. Effect of hydrogen on the phase-structure transformations in ZrCrNi alloy // J. Alloys and Compounds. - 2004. – Vol.376. - P. 95-104.
5. Булик І.І., Басараба Ю.Б., Тростянчин А.М., Давидов В.М. Диспропорціонування у водні та рекомбінування фаз Лавеса цирконію з хромом // Фіз.-хім. механіка матеріалів. - 2005. - № 3. - С. 101-108.
6. Булик І.І., Басараба Ю.Б. Вплив водневої обробки на розрядні властивості електродів зі сплаву ZrCrNi // Фіз.-хім. механіка матеріалів. - 2005. - № 5. - С. 49-54.
7. Пат. 51233 Україна, МКІ С22F1/18, 1/02. Спосіб гомогенізації інтерметалічних сполук гідридоутворюючих металів: Пат. 51233 Україна, МКІ С22F1/18, 1/02 Булик І.І., Федоров В.В., Тростянчин А.М, Басараба Ю.Б., Синюшко В.Г. (Україна); Фізико-механічний інститут ім. Г.В. Карпенка. - № 2002020928; Заявл. 05.02.2002; Опубл. 15.09.2005, Бюл. № 9. – 4 с.
8. Булык И.И., Федоров В.В., Тростянчин А.Н., Басараба Ю.Б., Сынюшко В.Г. Гомогенизационный отжиг интерметаллических соединений гидридообразующих металлов в водороде // Сборник докладов 3-й Междунар. конф. “Оборудование и технологии термической обработки металлов и сплавов” (ОТТОМ-3). - Харьков: ННЦ ХФТИ, ИПЦ “Контраст”, 2002. - Часть 1. - С. 186-190.
... що снукоподібна релаксація в наводнених аустенітних сталях обумовлена одиночними атомами водню, не парами, що відрізняється від прийнятої точки зору щодо розподілу водню як Н-Н пар в гцк сплавах на основі заліза. Також було досліджено вплив легуючих елементів на ентальпію активації міграції атомів водню в гцк сплавах на основі заліза. Для досягнення цієї мети було використано метод внутрішнього ...
... і (К = 0.895) є достатній для НДР і оправдовує понесені витрати. ОХОРОНА ПРАЦІ КОРОТКА ХАРАКТЕРИСТИКА ОБ’ЄКТА ПРОЕКТУВАННЯ. Для виконання робіт по дослідженню впливу легування на параметри МОН-структур застосовуються прилади: · установка для вимірювання ВФХ АМЦ-1515 з напругою живлення 220 В; · самописець з напругою живлення 220 В; · ВЧ-генератор з напругою живлення 220 ...
... М. В Непріла., І.Ф. Сіренко, В.І. Блохін // Деклараційний патент України, UA № 16276 Бюлетень №8 від 15.08. 2006 р. АНОТАЦІЯ Маруха М.В. "Розробка модифікованих композиційних покриттів на поліорганосилоксановій основі для захисту магістральних трубопроводів". Рукопис. Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.02.01 – матеріалознавство. – Фізико ...
... рунтових вод, а також вод наземних водоймищ із впливом на екотоксикологічний стан водних екосистем. Характер впливу мінеральних добрив на агроекосистеми, передусім, зумовлений їхнім хімічним складом, що, у свою чергу, залежить від особливостей сировини та промислових технологій виробництва. Мінеральні добрива є джерелом надходження багатьох хімічних елементів (ХЕ) та сполук у довкілля. При їхній ...
0 комментариев