1 Полоса.

,

2 Полоса.

  1.3 расчёт второстепенной балки

 

1.3.1 Определение нагрузок

Несмотря на неразрезность конструкций, при подсчёте нагрузок они рассматриваются как разрезные. Нагрузки на второстепенную балку принимаются с полосы шириной, равной расстоянию между осями второстепенных балок. Размеры ребра второстепенной балки назначаются предварительно в зависимости от пролёта балки.

 

1.3.2 Определение расчётных усилий

За расчётные пролёты второстепенной балки принимаются: для средних пролётов - расстояния между главными балками в свету; для крайних пролётов - расстояния от грани главной балки до оси опоры на стене. Многопролётные второстепенные балки с равными пролётами или с пролётами, отличающимися не более, чем на 10%, рассчитываются, как равнопролётные неразрезные балки, свободно лежащие на опорах и загруженные равномерно распределённой нагрузкой.

Определение изгибающих моментов производится с учётом их перераспределения в следствие пластических деформаций.

Определение нагрузки приведено в таблице.

Таблица 3 Нормативные и расчётные значения нагрузок на 1 п. м второстепенной

При ширине сечения главной балки bгб = 300 мм расчётные пролёты второстепенной балки:

1. в крайнем пролёте l0кр = 5500-20-15+25/2 = 5275 мм

2. в среднем пролёте l0ср = 5800-30 = 5500 мм

Рисунок 6. Схема расчётных пролётов монолитной железобетонной второстепенной балки.

Ординаты огибающей эпюры моментов определяются по формуле

М = b* (g+p) *l2

Где g - постоянная нагрузка, кН/м; р - временная нагрузка, кН/м

l - расчётный про лёт, м

Значения коэффициента b принимаем по отношению p/g = 7.752/6.304 = 1.23 Нулевые точки положительных моментов расположены на расстоянии 0,15*1от грани опор, а положение нулевой точки отрицательных моментов в первом пролёте зависят от соотношения p/g

Величины перерезающих сил у опоры определяется по формулам:

У опоры AQA = 0.4* (p+g) * l0кр= 0.4*31.415*6.975 = 87.65 кН

У опоры В слева QB = 0.6* (p+g) * l0кр= 0.6*31.415*6.975 = 131.47 кН

У опоры В справа и у остальных опорQC = 0.5* (p+g) * l0ср= 0.5*31.415*6.9 = 108.38 кН

Определение изгибающих моментов приведено в таблице 5. Окончательные огибающие эпюр моментов и перерезающих сил приведены на рисунке.

Таблица 4

№ п-т № точек Доля пролета b

 (q +P) * l02,кН

М (кН*м)
+ - + -
I

0

1

2

max

3

4

5

0

1,055

2.110

2.242

3.165

4.220

5.275

0,065

0,090

0,091

0,075

0,020

0,0715 391,11

25,422

35, 1999

35,59

29,333

7,822

27,964
II

5

6

7

max

8

9

10

0

1.055

2.110

2.242

3.165

4.220

5.275

0,018

0,058

0,0625

0,058

0,018

0,0715

0,023

0,0025

0,0045

0,017

0,0625

7.039

22.68

24.44

22.68

7.039

27.964

8.995

0.9778

1.759

6.6489

24.443

III

10

11

12

max

13

14

15

0

1.055

2.110

2.242

3.165

4.220

5.275

0,018

0,058

0,0625

0,058

0,018

0,0625

0,016

0,0085

0,0085

0,016

0,0625

7.039

22.68

24.44

22.68

7.039

24.443

6.2578

3.324

3.324

6.2578

24.443

 

1.3.3 Определение размеров сечения второстепенной балки

Второстепенная балка имеет тавровое сечение. Если полка тавра расположена в растянутой зове, то она при расчете не учитывается, и в этом случае расчет тавровой балки ничей не отличается от расчета прямоугольной балки с шириной, равной ширине, ребра. Поэтому размеры сечения второстепенной балки определяют по наибольшему опорному моменту - Мв.

Как известно, при проценте армирования, равном или большем предельного, изгибаемые элементы разрушаются хрупко по сжатой зоне бетона без развития значительных деформаций. В этом случае в статически неопределимых конструкциях к моменту разрушения перераспределение усилий полностью не реализуется, и несущая способность конструкции не может быть оценена расчет том по методу предельного равновесия. Поэтому для реализации полного перераспределения усилий элементы статически неопределимых конструкций следует проектировать с армированием, меньшим предельного армирования для статически определимых систем.

В связи с этим при подборе сечений, в которых намечено образование пластических шарниров, следует принимать значение x = 0.35 - 0.40. Согласно "Руководству по расчет) статически неопределимых железобетонных конструкций'", необходимо проектировать конструкции гак, чтобы причиной разрушения не могли быть срез сжатой зоны или (особенно в элементах двутаврового в таврового сечения) раздавливание бетона от главных сжимающих напряжений, и применять для армирования конструкций стали, допускающие достаточно большие деформации в пластических шарнирах.

Назначаем ширину ребра второстепенной балки b = 250 мм.

M = 27.964кНм,

am - определяется по оптимальному значению = 0,35¸0,4

При x=0,37  = 0.37* (1 - 0.5*0.37) = 0.302

Rb =8,5 МПа - для бетона класса В 15,b - ширина ребра второстепенной балки

Полная высота балки

h = h0 + a = 25.0 + 4 =29 см

где a - расстояние от нижней грани балки до центра тяжести арматуры.

Так как высота балки должна быть кратна 5 см, то окончательно принимаем сечение второстепенной балки

b*h= (20*40) см

b/h=20/40=0,5= (0,4¸0,5)

Пересчитаем новое значение рабочей высоты второстепенной балки:

h0 = h - a = 40 - 4 = 36 см

1.3.4 Подбор сечения арматуры

В зависимости от направления действия изгибающего момента сжатия зона второстепенной балки таврового сечения расположена в верхней или нижней части сечения.

При подборе продольной арматуры в пролетах второстепенной балки по положительным изгибающим моментам сечение балки рассчитывается как тавровое с шириной полки bf’.

При определении сечения продольной арматуры на промежуточных опорах и в средних пролетах по отрицательному изгибающему моменту в расчет вводится только ширина ребра балки b.

Максимальная расчетная ширина полки b (ограничивается определёнными пределами, так как её совместная работа с ребром в предельной стадии может быть не обеспечена в следствие местной потери устойчивости полки и ее чрезмерного прогиба.

Пункт 3.16. СНиП 2.03.01-84*

Значение bf’ вводимое в расчёты, принимается из условия, что ширина свеса полки в каждую сторону от ребра должна быть не более 1/6 пролета элемента и не более:

а) при наличии поперечных рёбер или  расстояния в свету между продольными ребрами/

б) при отсутствия поперечных рёбер или при расстояниях между ними больших, чем расстояния между продольными ребрами, и /

При определении сечения продольной арматуры на промежуточных опорах и в средних пролётах по отрицательным изгибающим моментам в расчет вводится только ширина ребра балки b.

Пункт 2.19. СНиП 2.03.01-84*

В качестве ненапрягаемой арматуры железобетонных конструкций следует преимущественно применять

а) горячекатаную арматурную сталь класса АШ

6) арматурную проволоку диаметром 3-5 мм класса BpI (в сварных сетках и каркасах)

в) допускается также применять стержневую арматурную сталь классов А-П и A-I для поперечной арматуры линейных элементов, для конструктивной и монтажной арматуры, а также в качестве продольной, если другие виды ненапрягаемой арматуры не могут быть использованы.

Определяем площадь сечения продольной арматуры в первом пролёте по положительному изгибающему моменту

Исходные данные: М = 35.59 кНм, b = 200 мм, ho = h - a = 400-40 = 360 мм,  60 мм

где

а)

б)

в)  = 60/400 = 0,15 > 0.1 =>  равно шагу второстепенных балок.

В расчётную ширину полки  вводится минимальное значение

Бетон класса В15, Rb = 8.5 МПа.

Назначаем арматурные стержни класса AII Rs = 280МПа.

Определим, где проходит граница сжатой зоны в нашем случае:

Mn= Rb*gb2* bf’* hf’* (h0 - hf’/2) =8,5*100*0,9*170*6* (36-6/2) = 2.57*107 Н * cм = 257.499 кН * м/

Так как Mn = 257.499 кН*м> M1max=35.59 кН * м, то граница сжатой зоны проходит в полке. Расчет производим как для прямоугольного сечения с шириной bf’.

am = M1max / (Rb*gb2* bf’* h02) =35.59*105/ (8.5*100*0.9*170*362) = 0,021

По таблице по am =0,021 x = 0,021 n = 1 - x / 2 = 0,9894

w = 0,85 - 0,008* Rb*gb2= 0,85 - 0,008 * 8,5 * 0,9 = 0,7888, x = 0,021< xr=0,681 - условие выполняется. Определим требуемую площадь продольной арматуры:

Подбор площади сечения продольной арматуры по опоре В

M2max = 27.964 кН*м, b = 200 мм

ho = h - a = 400 - 40 = 360 мм

 60 мм, Бетон класса В15, Rb = 8.5 МПа

Назначаем арматурные стержни класса AII Rs = 280МПа

am = M2max / (Rb*gb2* bf’* h02) = 27.964*105/ (8,5*100*0,9*170*362) = 0.141

По am =0.141 x=0.1525 n = 1 - x / 2 = 0.92375

x=0.141< xr=0,681 Þ условие выполняется

Подбор площади сечения продольной арматуры по опоре С:

Mc = 24.434 кН*м

b = 20см h0 = 36см

am = Mc / (Rb*gb2* bf’* h02) = 24.434 *105/ (8,5*100*0,9*20*362) = 0.0145

По am =0.0145 x=0.0145 n = 1 - x / 2 = 0.99275

x=0.0145 < xr=0.681 Þ условие выполняется

Подбор площади сечения продольной арматуры во втором пролёте по отрицательному моменту.

M = 24.434 кН*м, b = 20см h0 = 36см

am = Mc / (Rb*gb2* bf’* h02) = 24.434 *105/ (8,5*100*0,9*20*362) = 0.123

По am =0.123 x=0.131 n = 1 - x / 2 = 0.9345

x=0.131< xr=0.681 Þ условие выполняется

Требуемая по расчету площадь сечения продольной арматуры приведена на рисунке

 

Рис.7. Схема требуемой площади арматуры.

 

1.3.5 Расчет поперечной арматуры

Расчет на действие поперечной силы не производится, если соблюдается условие:

Q< jв4 *Rbt * gb2 * b*h0

где -jв4 - коэффициент для тяжёлого бетона

Rbt - расчётное сопротивление класса В 15 на растяжение

gb2 - коэффициент условий работы

Q< 0,6 * 0,75 *100 *0,9 * 20 *36 = 29160 Н = 29,160 кН

Qвл = 131, 74 кН > Q = 29,160 кН Þ расчёт на действие поперечной силы требуется.

При армировании балки вязанными сетками, хомуты бывают диаметром 6 - 8 мм из стали класса АI с шагом кратным 5 см.

Затем вычисляют  и сравнивают с поперечной силой у грани опор балки.

Если  > Q - отогнутые стержни (утки) проектируется конструктивно, если  < Q отогнутые стержни рассчитываются.

 

Рис. 8. Схема усилий в сечении, наклонном к продольной оси железобетонного элемента, при расчете его по прочности на действие поперечной силы.


Расстояния между хомутами S, между опорой и концом отгиба, ближайшего к опоре S1, а также между концом предыдущего и началом последующего отгиба S2, должен быть не более величины

где  = 2,0 - для тяжелого бетона

Принимаем двухветвевые хомуты d = 6 мм

Шаг хомутов в крайней зоне пролета равен:

Так как h = 500 мм > 450 мм, то S1 = h/3= 50/3 = 16,67 см и не более 15 см

Принимаем S1 = 100 мм

В средней зоне пролета S2 = 3*h/4=3*50/4 = 37,5 см и не более 500 мм

Принимаем S2 = 350мм

Определим величину поперечной силы, которая воспринимается хомутами и бетоном.

Q = Qsw + Qb = qsw * Cw + (jb2 (1 + jf + jn) Rbt gb2 b h02) / C0

C0 - проекция наклонной трещины на продольную ось элемента

qsw - интенсивность поперечного армирования

qsw = Rsw * Asw / S1 = (175*100*2*0,283) /10 = 990,5 Н/см

Asw - площадь сечения двухветвевого хомута

jf - коэффициент учитывающий свес полок

jf = 0, так как на опоре полки растянуты

jn - учитывает продольные силы

Значение Cw находим из условия

2 h0< Cw < C0

Принимаем Cw = 85,83 см

Находим:

отгибы по расчету не требуется по конструктивным соображениям.

1.3.6. Назначение количества и диаметров продольной рабочей арматуры

Определив необходимое сечение арматуры в пролётах и на опорах, а так же отогнутой арматуры, переходят к назначению количества и диаметра стержней. При этом руководствуются следующими положениями:

1. Количество стержней необходимо назначать таким, что бы арматура поместилась в одном ряду (но не менее 3 стержней). Диаметр рабочих стержней следует назначать от 12 мм до 25 мм.

2. Число стержней в пролете следует согласовать с требуемым по расчету сечением отогнутой арматуры и с количеством отогнутых стержней, которое требуются, чтобы перекрыть участок огибающей эпюры поперечных сил.

3. Всю отогнутую арматуру следует получить посредством отгиба нижних продольных стержней и, в крайнем случае, если их не хватает, поставить "утки". Количество плоскостей отгибов и площадь отогнутых стержней в каждой плоскости должны быть не меньше требуемых по расчету. Угол наклона отгибов к оси балки (при h < 800 мм) принимается 45°.

4. Следует стремиться к меньшему количеству разных диаметров рабочей арматуры. Разница в диаметрах рабочей арматуры не должна быть меньше 2 мм.

5. Из лежащих по визу балки стержней не менее чем два стержня должны быть доведены до опоры по низу балки (при b > 150 мм).

6. Подбор количества стержней и их диметров должен быть осуществлен таким образом, чтобы разность расчетной площади сечения арматуры и суммарной площади уложенных в пролетах стержней была минимальной (до ±5%).

7. При размещении в поперечном сечении стержней следует обязательно следить за соблюдением зазора между ними, исходя из принятой ширины балки. Над опорой зазоры между стержнями в ряду увеличиваются для удобства бетонирования.

При расположении нижней арматуры более чем в два ряда по высоте сечения расстояние между стержнями, расположенными в третьем и следующих рядах, должны приниматься не менее 50 мм.

8. Требуемая на опорах по расчету на момент, продольная рабочая арматура должна быть получена за счет пролетной арматуры, которую можно отогнуть, и арматуры, принятой по отрицательному моменту в соседних пролетах и укладываемой на крайние свободные места с тем, чтобы они являлись ' одновременно и монтажными стержнями.

Площадь сечения стержней первой плоскости отгибов (при отсутствии "уток"), считая от опоры, но только слева иди только справа от опоры, не учитывается. Эти отгибы имеют, как правило, горизонтальный участок на опоре всего 50 - 100 мм и не могут воспринимать изгибающий момент.

В опорном сечении на восприятие изгибающего момента работает тот стержень, который имеет до опорного сечения прямой участок не менее ho / 2.

В некоторых случаях допускается для получения на опоре требуемой площади сечения арматуры устанавливать дополнительные прямые стержни, которые укладывают на крайние свободные места.


Информация о работе «Многоэтажное производственное здание»
Раздел: Строительство
Количество знаков с пробелами: 44913
Количество таблиц: 3
Количество изображений: 29

Похожие работы

Скачать
27905
5
17

... 20,66) · 100 = 314,57 · 105кН · м 5. Проектирование колонны первого этажа   5.1 Конструктивная схема Колонны многоэтажных промышленных зданий состоят из сборных ж/б элементов длиной, кроме элемента 1-го этажа, равной высоте этажа. Для опирания ригелей перекрытия колонны снабжены консолями. Стыки элементов колонн для удобства работ по соединению устраиваются на расстоянии 500—800 мм выше ...

Скачать
31806
2
50

... . 1). Размеры рядовой плиты 6,0 × 1,6 м. Таблица 1 Вид нагрузки Нормативная нагрузка (Н/м2) γf Расчетная нагрузка (Н/м2) 1.Постоянная: 1.1. Собств. Вес плиты 2000 1,1 2200 1.2. Конструкция пола 900 1,3 1170 Итого постоянная 2900 - 3370 2.Временная: 7000 1,2 8400 2.1. в т.ч. кратковременная 2000 1,2 2400 2.2. в т.ч. длительная 5000 1,2 ...

Скачать
35029
2
5

... стержней слева 2Ø28 А300: 504 мм < 20d = 560 мм справа 2Æ36 A-II (А300) 629 мм < 20d = 720 мм Принято W1= 500 мм; W2 = 550 мм; W3 = 600 мм; W4 = 750 мм. 6. Расчет сборной железобетонной колонны Сетка колонн  м Высота этажей между отметками чистого пола – 3.3 м. Нормативное значение временной нагрузки на междуэтажные перекрытия 8.5 кH/м2, расчетное значение ...

Скачать
103427
25
24

... 1991. - 767 с. 7.  Бондаренко В.М., Римшин В.И. Примеры расчёта железобетонных и каменных конструкций: Учеб. пособие. - М.: Высш. шк., 2006. - 504 с. 8.  Тимофеев Н.А. Проектирование несущих железобетонных конструкций многоэтажного промышленного здания: Метод. указания к курсовой работе и практическим занятиям для студентов спец. "Строительство ж. д., путь и путевое хозяйство". - М.: МИИТ, 2004. ...

0 комментариев


Наверх