2.9. Методи підсумовування похибок вимірювань

2.9.1. Постановка задачі підсумовування похибок вимірювань

При аналізі похибок вимірювань і ЗВТ можливі три основні задачі:

1) кількісна оцінка окремих складових систематичної і випадкової похибок;

2) підсумовування кількісних характеристик складових похибки одного виду (систематичних або випадкових);

3) підсумовування кількісних характеристики систематичної і випадкової складових з метою одержання повної похибки.

Вирішення цих задач у сукупності і дозволяє одержати кількісні оцінки характеристик похибки, тобто оцінити похибку. Перш за все зауважимо, що термін "підсумовування" використовують при оцінюванні похибок в узагальненому смислі, а не як найменування конкретної математичної операції. Більш того, в останній час замість терміна "підсумовування" все частіше застосовують термін "об’єднання" похибок.

Повна похибка вимірювань, як і ЗВТ, у загальному випадку створюється рядом складових (систематичних і випадкових), оцінку кожної з яких знаходять розрахунковим або експериментальним шляхом. Метод підсумовування складових похибки визначається природою і взаємозв’язком їх джерел.

Сутність задачі визначення розрахунковим шляхом повної похибки вимірювань або ЗВТ полягає в підсумовуванні (об’єднанні) її окремих складових за установленим, загальноприйнятим правилом, що є одним із заходів забезпечення єдності вимірювань. Так, для визначення похибки навіть окремого вимірювального пристрою необхідно підсумовувати всі його складові похибки, викликані різними причинами. При створенні вимірювальних приладів, установок і систем має місце задача оцінки похибки вимірювальних каналів, яка зводиться до підсумовування похибок ряду вимірювальних пристроїв, що створюють даний вимірювальний канал. Для визначення похибок будь-яких видів вимірювань необхідно підсумовувати різні складові методичних, інструментальних і суб’єктивних похибок, а також похибку обчислювань при опосередкованих, сукупних і сумісних вимірюваннях.

Таким чином, задача розрахункового підсумовування (або аналітичного визначення) похибок - одна з основних задач як при створенні ЗВТ, так і при оцінюванні похибок результатів вимірювань. Причому необхідні якомога простіші методи підсумовування похибок.

Трудність підсумовування похибок полягає в тому, що всі складові похибки треба розглядати як випадкові величини з найрізноманітнішими значеннями в кожній конкретній реалізації. Найбільш повно вони можуть бути описані своїми законами розподілу, а їх спільна дія - композицією цих законів. Проте вирішення задачі підсумовування похибок у такій постановці пов’язане з великими труднощами двоякого роду. По-перше, одержання композиції законів розподілу похибок уже для 3-4 складових вимагає значного об’єму обчислювань, які часто можуть бути виконані тільки на ЕОМ. По-друге, при виконанні технічних і більшості контрольно-повірочних вимірювань експериментатор, як правило, не має інформації про закони розподілу складових сумарної похибки. Ці труднощі викликають необхідність застосування для оцінювання похибок спрощених правил підсумовування їх складових, які дозволяють з достатнім ступенем вірогідності оцінити сумарну похибку в умовах неповної початкової інформації.

Найбільш розробленими методами оцінювання випадкових похибок є методи, які безпосередньо запозичені з математичної статистики. Основні труднощі складають оцінювання і підсумовування систематичних похибок. Звичайно їх характеризують границями, які оцінюють приблизними методами, в тому числі близькими до статистичних.

Для оцінювання похибок використовуються три методи (правила, види, форми) підсумовування складових похибок: арифметичне, алгебраїчне і геометричне (квадратичне, статистичне) підсумовування.

2.9.2. Визначення сумарної систематичної похибки вимірювань

При точних вимірюваннях багато які систематичні похибки вилучаються або відповідною постановкою експерименту, або введенням поправок. Як правило, це легше зробити для змінних похибок, які так чи інакше проявляються у вимірювальних сигналах (показах) ЗВТ. Трудніше вилучити постійні систематичні похибки: потрібен аналіз даних про об’єкт, засоби і умови вимірювань, як апріорних, так і одержаних під час експерименту. Це є однією з основних задач при проведенні вимірювань. Методи їх вирішення не достатньо формалізовані і потребують високої метрологічної культури.

Постійні систематичні похибки можна поділити на строго і умовно постійні, причому способи оцінювання і підсумовування для них різні. Для строго постійних складових придатний лише детерміністський підхід і відповідно алгебраїчне та арифметичне підсумовування. Для умовно постійних складових систематичної похибки придатні, залежно від умов, різні квазістатистичні способи підсумовування.

Для визначення систематичної складової повної похибки, інакше кажучи, при підсумовуванні постійних систематичних складових похибки, коли відомі їх значення і знаки, використовують алгебраїчне підсумовування. Це правило є наслідком однієї з основних властивостей математичного сподівання випадкових величин, згідно з яким математичне сподівання суми випадкових величин (похибок) дорівнює сумі математичних сподівань цих випадкових величин (похибок). Ураховуючи, що математичне сподівання повної похибки являє собою її систематичну складову, маємо алгебраїчну суму

де  - сумарна систематична похибка;

 - складові систематичної похибки,  - їх кількість.

Якщо для строго постійних систематичних похибок задані їх допустимі значення (або границі змінювання) , то визначається допустиме значення сумарної систематичної похибки як арифметична сума за модулем допустимих значень складових

.

Величину  називають арифметичними границями систематичної похибки.

На практиці нерідко буває відома додаткова інформація про поведінку систематичних похибок, зокрема, відомо, що невилучені систематичні похибки змінюються нерегулярно, залишаючись у границях . Тоді при підсумовуванні такі похибки умовно розглядають як випадкові величини і звичайно вважають, що вони рівномірно розподілені в заданих границях. Це припущення ґрунтується на тому, що для випадкової величини, яка змінюється в заданих границях, рівномірному розподілу відповідає максимальна ентропія (невизначеність). Тому таке припущення є досить обережним і на практиці приводить до реалістичної оцінки похибок.

Зрозуміло, цей умовний прийом не є єдино можливим, проте він досить простий і широко застосовується на практиці. Можна використовувати і "нестатистичні" методи, які базуються, наприклад, на інтервальному аналізі або теорії нечітких множин, проте ці методи не є строго обґрунтованими і містять певні припущення [8].

При квазістатистичному методі границі  довірчого інтервалу сумарної невилученої систематичної похибки  називають статистичними і знаходять за формулою

(2.22)

де  - коефіцієнт, що залежить від числа m складових невилученої систематичної похибки і від співвідношення їх границь, а також від довірчої ймовірності P. Формула (2.22) є приблизною, вона одержана шляхом побудови композиції рівномірних розподілів складових  на відповідних інтервалах . Значення коефіцієнта  для трьох поширених значень P наведено в табл. 2.2.

При значеннях довірчої ймовірності та  залежність коефіцієнта  від числа складових m незначна, тому рекомендується брати середні значення коефіцієнта : . При  залежність коефіцієнта  від числа складових m та їх співвідношення істотні, тому при  рекомендується брати значення , а при  можна уточнювати значення  за графіком (наводиться в окремих працях) або за допомогою табл. 2.3.

Таблиця 2.2
Довірча  ймовірність, P

Значення коефіцієнта  при числі складових m, що дорівнює:

2 3 4 5 ... ¥ Середнє
0,90 0,97 0,96 0,95 0,95 ... 0,95 0,95
0,95 1,10 1,12 1,12 1,12 ... 1,13 1,13
0,99 1,27 1,37 1,41 1,42 ... 1,49 1,4
Таблиця 2.3

Число

cкладових, m

Значення коефіцієнта kq при співвідношенні границь , що дорівнює:

0 1/2 1 2 3 4 5 6 7
2 0,98 1,15 1,27 1,22 1,15 1,12 1,08 1,07 1,05
3 1,27 1,32 1,37 1,32 1,24 1,18 1,15 1,12 1,08
4 1,38 1,40 1,41 1,36 1,28 1,23 1,18 1,15 1,11

Параметр , який характеризує співвідношення складових невилученої систематичної похибки, дорівнює найменшому із співвідношень границь  та , при цьому .

При малому числі складових () після знаходження статистичної границі qд необхідно порівняти її з арифметичною границею qа і прийняти як остаточну найменшу з двох границь. Слід зазначити, що для малого числа складових арифметичні границі qа звичайно незначно перевищують статистичні qд — не більше як на 30 %, що в багатьох випадках цілком припустимо.

Якщо невилучені систематичні складові похибки задані своїми довірчими границями , обчисленими за формулою (2.22), то довірчу границю сумарної систематичної похибки знаходять із виразу

,

де  - довірчі границі j-ї невилученої систематичної складової похибки, що відповідають довірчій ймовірності ;

 - квантильний коефіцієнт переходу, що відповідає довірчій імовірності .


Информация о работе «Виявлення грубих результатів вимірювань»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 25191
Количество таблиц: 2
Количество изображений: 2

Похожие работы

Скачать
26511
0
1

... ії (функціонали) обчислюються, як безперервні, а реально вони є дискретними (вимірювання здійснюються при дискретних значеннях фізичної величини - аргументу). Відмітною особливістю методичних похибок вимірювань є те, що вони, як правило, неконкретні і тому не можуть бути одержані будь-які узагальнені кількісні оцінки. Враховуючи це, методичні похибки звичайно не нормуються і не вказуються в техн ...

Скачать
23029
0
0

... і невилучених систематичних складових повної похибки результату вимірювання, її оцінювання проводиться відповідно до методики, викладеної в підп.2.9.4. Оцінка результату і похибки прямих багаторазових вимірювань Постійно зростаючі вимоги до точності прямих вимірювань задовольняються не тільки за рахунок підвищення точності заново створених ЗВТ, але й використанням більш ефективних методів ...

Скачать
8805
5
2

... Звідси слідує, що дійсно наші результати розподіляються за нормальним законом розподілу. Грубі похибки та промахи повинні бути виявленні і відкинуті з результатів вимірювань. З цією метою використовується спеціальний статистичний критерій – критерій Стьюдента. В роботі використовуємо критерій – правило трьох у. Початковий статистичний ряд представимо у вигляді такого графіка: статистичний ...

Скачать
16438
2
9

... ірювання; 6) обчислення довірчої випадкової похибки і загальної похибки результату опосередкованого вимірювання; при нелінійній залежності знаходять систематичну похибку опосередкованих вимірювань, обумовлену перехресними членами у рівнянні. При прямих одноразових вимірюваннях початкових величин  процедура визначення результату Y опосередкованих вимірювань зберігається такою самою, як і при ...

0 комментариев


Наверх