3.2 Результати досліджень сплаву AgZn методом електроопору

Маючи у розпорядженні зразки з трьома вихідними станами (деформація, відпал, загартування) були побудовані залежності відносної зміни електроопору DR/R=(Rобробки-Rвідпалу)/Rвідпалу від температури загартування, тобто ізохрони. За початковий стан приймався стан відпаленого зразка сплаву AgZn. Оскільки деформований стан передує відпаленому, то вихідною точкою для нього на вісі DR/R була та, яка відповідала б відносній зміні електроопору при відпалі деформованих зразків. Цей ефект для сплавів Ag-10 aт.%Zn та Ag-20 ат.%Zn становить приблизно 12% та 10% відповідно. Як видно з рис.5 - рис.6 ефект гартування відпалених зразків £1% і однаковий для сплавів обох концентрацій.

На рисунку приведені зміни електроопору при гартуванні від 70оС з інтервалом 30оС. Виміряні значення електроопору усереднювались і на графіку приведені середні значення ефектів зміни електроопору. Похибка у вимірюванні не перевищує 0,03%. Зразки при температурах, від яких відбувалося гартування, витримувались 10 хвилин. Видно, що при гартуванні від низьких температур для загартованих від 350оС зразків у поведінці DR/R(T) спостерігається деякий мінімум, що відповідає інтервалу 100-140оС. Для сплаву Ag -10 ат.%Zn він менш виразний і трохи зміщений в бік більших температур. В поведінці відпалених від 350оС зразків зміна DR/R до температур »150оС ніяких змін не спостерігається. Далі зростання електроопору не має монотонного характеру, а проходить через локальний мінімум, що теж є більш різко вираженим для сплаву Ag-20 ат.%Zn. До того ж він відповідає меншій температурі 380оС, а не 420оС, як для Ag-10 ат.%Zn. Як видно з рисунків 5-6, криві відпалу та гартування майже співпадають при температурах вище 250-300оС. Для сплаву Ag-10 ат.%Zn це стосується і деформованого зразка, а для Ag-20 ат.%Zn це співпадання лежить за межами 420оС. Далі поведінка r(Тзагарт) подібна для сплавів обох концентрацій: це різкий високий максимум, що відповідає температурі Т=460оС.

Деформація призводить до значного зростання електроопору (на 12% для Аg-10 ат.%Zn та на 17% для Ag-20 ат.%Zn при однаковому ступені деформації). При ізохронному відпалі деформованих зразків до 180оС електроопір змінюється мало. Починаючи від 200оС спостерігаємо різку зміну. Температура 200оС відповідає стадії рекристалізації. При температурах 250-320оС спостерігається уповільнення зменшення опору. У тому ж інтервалі у відпаленого сплаву спостерігається зростання опору.

На рис. 8 представлені залежності відносної зміни електроопору від флюенсу для сплавів Ag 10 та 20 ат.%Zn (криві 1 і 2 відповідно). Ці залежності мають немонотонний характер. Мінімум електроопору досягається при флюенсі 5х1017 е/см2 і є більш глибоким для сплаву Ag-20 ат.%Zn.

3.3 Обговорення результатів.

 

Загальною особливістю кривих залежності та зміни електроопору від температури загартування є те, що вони мають немонотонний характер незалежно від вихідного стану. Немонотонний характер мають і криві, що відображають зміну електроопору при електронному опроміненні.

Рентгеноструктурні дослідження зразків показали, що вони являють собою макроскопічно однорідний твердий розчин - на дифрактограмі спостерігаються лише рефлекси α-твердого розчину, який має ГЦК-структуру.

Крім цього, звертає на себе увагу той факт, що по-перше, при температурах вище 400оС електроопір зразків даної концентрації стає однаковим для всіх вихідних станів. По-друге, електроопір загартованого зразка після циклу загартувань в режимі ізохронного відпалу повертається до свого початкового значення при загартуванні від відповідної температури.

Викладені факти дають можливість стверджувати, що зміна електроопору пов‘язана зі зміною стану близького впорядкування в зразках, що досліджуються. Найбільш розупорядкованим можна вважати стан, що відповідає деформованому зразку. При відпалі цього зразка - підвищення ступеня близького впорядкування, спостерігається зменшення електричного опору. При підвищенні температури загартування також спостерігається збільшення електричного опору, що можна було б пов‘язати з температурним розупорядкуванням. Але, починаючи з температур ~350оС опір починає зменшуватися.

Такий хід залежності електроопору від температури загартування не може бути пояснений з точки зору однорідного близького впорядкування, оскільки при однорідному впорядкуванні збільшення електроопору при температурному розупорядкуванні повинно було б продовжуватися монотонно до повного розупорядкування.

Для пояснення ходу залежності електроопору від температури загартування необхідно зробити припущення, що зміна температури загартування супроводжується, щонайменше, двома процесами. Один з них пов‘язаний з дифузією атомів на відстані порядка міжатомної та відповідає за ступінь близького впорядкування за певним типом. Інший відповідає за перегрупування атомів на більших відстанях і пов‘язаний зі зміною типу близького впорядкування.

Система Ag-Zn за діаграмою станів схожа на системи Cu-Al, Ag-Al, в яких спостерігалися два типи близького впорядкування. Температурні області існування різних типів близького впорядкування корелюють з температурою фазового перетворення в сусідніх з твердим розчином областях при більших концентраціях другого компонента. Тому типи близького впорядкування можна означити як упорядкування за типом сусідньої фази у відповідній області температур, або, простіше, як високотемпературний та низькотемпературний тип близького впорядкування. Перетворення одного типу впорядкування на інший починається з локальної перебудови в розташуванні атомів. Далі процес розвивається з утворенням концентраційних неоднорідностей. Для висококонцентраційних твердих розчинів він закінчується утворенням мікрообластей, впорядкованих за типом відповідної фази. Остання стадія процесу спостерігається в твердих розчинах Cu-Al з концентрацією Al 15 та 17 ат.% в області кімнатних температур (границя розчинності 18.2 ат.%).

Близьке впорядкування при кімнатних температурах має свої особливості, пов‘язані з уповільненням кінетики процесу. При повільному охолодженні відпаленого зразка в ньому фіксується стан, який відповідає більш високій (100-150оС) за кімнатну температуру, і зразок залишається в нерівноважному стані ще довгий час по

Рисунок 5. Ізохрони загартування. 1 - відпал, 2 - загартування, 3 - деформація.

Рисунок 6. Ізохрони загартування. 1 - відпал, 2 - загартування, 3 - деформація.

Рисунок 7. Ізохрони загартування. 1 - відпал, 2 - загартування.

Рисунок 8. Залежність залишкового електроопору від флюенсу.

відношенню до часу експерименту. Зміна електричного опору для загартованого зразка в інтервалі температур 100-150оС (рис. 7, крива 2), яка пов‘язана з перебудовою типу близького впорядкування з високотемпературного на низькотемпературний, прискорюється за рахунок відходу на стоки загартованих (нерівноважних) вакансій.

Поглибити процеси перетворення при кімнатних температурах можливо введенням нерівноважних точкових дефектів, наприклад, за рахунок опромінення прискореними електронами. Дійсно (рис. 8), при опроміненні зразків обох концентрацій флюенсами 2х1017 та 5х1017 е/см2 спостерігається подальше зменшення електроопору. При цьому ефект зміни електроопору при опроміненні виявляється більшим для зразків Ag-20 ат.%Zn. Це можна пояснити більшою концентрацією атомів Zn і, як наслідок, більшим ступенем впорядкування за низькотемпературним типом. При меншій концентрації Zn ефективний шлях для утворення відповідних концентраційних неоднорідностей повинен бути більшим, і, отже, час досягнення мінімуму електроопору повинен бути більшим. Тобто мінімум мав би з‘явитися при дещо більших флюенсах. Нажаль, через технічні труднощі, однозначно встановити цей факт не вдалося.

Подальше зростання електроопору при збільшенні флюенса можна пояснити розвитком областей, що впорядковуються за типом низькоконцентраційної фази. Це призводить до збільшення внутрішніх напружень і, можливо, часткової втрати когерентності границь.

Паралельно дослідженням зміни електроопору проводились дослідження рентгеноструктурним методом. Були досліджені зразки: 1) відпалені при 300оС протягом 4 годин, 2) загартовані від 300оС, 3)опромінені флюенсами 2*1017, 1018, 1.5*1018 е/см2, стан яких відповідає екстремальним або найбільш характерним точкам зміни електроопору.

Аналіз параметрів ближнього порядку для загартованих зразків від температури 300оС свідчить про максимальний ступінь впорядкування за типом L12.Як показав розрахунок параметрів Каулі, знакочергування для перших чотирьох координаційних сфер (-,+,-,+), а також величина параметру для першої координаційної сфери вказують на впорядкування за типом L12. Якщо сплав має однорідний близький порядок, зі зниженням температури ступінь впорядкування має збільшуватися. В нашому випадку при зменшенні температури ступінь впорядкування зменшується. Тому можемо казати, що сплав AgZn має неоднорідний близький порядок. Можливо, це пов’язано з утворенням в сплавах областей, збіднених Zn і областей, збагачених Zn, завдяки тому, що Zn є підрозмірним і більш рухливим елементом сплаву.

Розрахунок параметрів ближнього порядку, якщо дивитися на величину параметру на першій координаційній сфері для сплавів Ag-10 ат.%Zn та Ag-20 %Zn, опромінених флюенсом 2*1017 е/см2, 1018 е/см2, говорить про ще більше зменшення впорядкування за типом L12 і появи впорядкування за новим типом. Області збагачені Zn, збагачуються ще більше завдяки радіаційно-стимульованій дифузії. Слід зазначити, що для сплавів Ag-20 %Zn процеси йдуть швидше, ніж у випадку зі сплавом Ag-10 ат.%Zn.

Для більших значень флюенсу електронного опромінення змінюється також форма модуляції фона Лауе до першого структурного максимума, а розраховані параметри Каулі свідчать про перехід близького впорядкування у ближнє розшарування (змінюється знак параметру Каулі на першій координаційній сфері).

Якщо розглянути дифрактограму сплаву Ag-20 %Zn, опроміненого флюенсом 1018 е/см2, та проідентифікувати її, знаходяться лінії, що належать z-фазі, яка має гексагональну структуру.

Якщо співставити з графіком залежності залишкового електроопору від флюенсу (рис. 8), то бачимо, що для флюенсу від 5*1017 е/см2 і більше (судячи зі зростання кривої електроопору) йде ближнє розшарування за типом низькотемпературної висококонцентраційної z-фази.


4. Висновки

1.                Немонотонна залежність зміни електроопору в твердих розчинах Ag 10 та 20 ат.%Zn при термообробці та опроміненні прискореними електронами пов‘язана зі зміною типу ближнього впорядкування.

2.                Максимум на кривій залежності зміни електроопору від температури загартування корелює з температурою фазового перетворення β-ζ фаз.

3.                Електронне опромінення флюенсами до 5х1017 е/см2 поглиблює процес встановлення низькотемпературного типу низького порядку.


5. Перелік посилань

1.    Хансен М., Андерко К. Структуры двойных сплавов. Т.1, М. - Металлургия.- 1962.-608с.

2.    Головин В. А., Ульянова Э. Х. Свойства благородных металлов и сплавов. М.-Металлургия.- 188 с.

3.    Cornelis I., Wayman C. - Scripta metall.-1974.-v.8, N 11, p. 1321-1326.

4.    Иверонова В. И., Кацнельсон А. А. Ближний порядок в твердых растворах.-М. -Наука.-1978.-255 с.

5.    Лифшиц И. М. К теории твердых растворов. ЖЭТФ, т. 9, вып. 4, 1939.-с.500-511.

6.    Жданов Г. С. Физика твердого тела. МГУ, 1961.

7.    Cowely J. M. X-ray Measurement of Order in Single Crystals of Cu3Al. Journal Appl. Phys., vol. 21.-N1.-1950.-p.24-29.

8.    Иверонова В. А., Кацнельсон А. А. Ближний порядок и физические свойства однофазных сплавов. Упорядочение атомов и его его влияние на свойства сплавов. Київ, Наукова думка, 1968.-сб. ст., с. 14-22.

9.    Кацнельсон А. А., Алимов Ш. А. и др. Локальное упорядочение и электрическое сопротивление сплавов NiW и PdCo. ФММ.-1968.-т. 26.-вып.6.-с. 987-995.

10.   Иверонова В. И., Кацнельсон А. А. Ближний порядок и характеристическая температура сплава Ni3Pt. Кристаллография, т. 4.-1959.-вып. 1., с. 25-29.

11.   Иверонова В. И., Кацнельсон А. А. Ближний порядок и рентгенографическая характеристическая температура в Ni3Pt.-Кристаллография, т.5.-1960.-вып.1, с. 71-78.

12.   Кацнельсон А. А. Процессы установления ближнего порядка в неравновесных твердых растворах. Изв. Вузов. Физика. N10(113).-1971.-c.17-24.

13.   Козлов Э. В.  Превращение порядок-беспорядок и устойчивость упорядоченного состояния.- Изв. Вузов. Физика.-1976.-т.8.-с.82-92.

14.   Козлов Э. В. Природа стабильности упорядоченного состояния и конфигурационные и неконфигурационные эффекты при фазовых превращениях порядок-беспорядок в двойных металлических твердых растворах замещения.: Автор. дис. д-ра техн. наук.-Томск,1984.-32с.

15.   Смирнов А. А. Теория электросопротивления сплавов. Киев, Наука.-1960.

16.   Энциклопедия металлофизики. ОНТИ.-1937.-с.302.

17.   Кривоглаз М. А., Смирнов А. А. Теория упорядочивающихся сплавов.-М.-Физматгиз.-1958.

18.   Rosenblatt D. B., Smoluchowski R., Dienes G. J. Radiation Induced Changes in the Electrical Resistance of Disordered Alloys. Appl. Phys., v.26-N8.-1955.-p.1044-1048.

19.   Arlin E., Asch and George L. H. Quantum Theory of the Residual Electrical Resistivity of Disordered Alloys. Phys. Review.-1963.-v.132-N3-p.1047-1057.

20.   Дамаск А., Динс Дж. Точечные дефекты в металлах. Мир, М.-1966

21.   Ван Бюрен. Дефекты в металлах. ИЛ, М.-1962

22.   Howie A. The Electrical Resistivity of Stacking Faults. The Phyl. Mag. -vol.5.-1960.-N5.-p.251-271

23.   Блатт Р. Д. Теория подвижности электронов в твердых телах. М. Наука.-1966

24.   Малышев В. М., Румянцев Д. В. Серебро. М.-Металлургия.-1987.-320с.

25.   Westgeen A., Phragmen G. Phyl. Mag., 50, 1925, p.347-348

26.   Савицкий Е. М. Благородные металлы. М. Металлургя,-1979.-763с.

27.   Мастеров В. А., Саксонов Ю. В. Серебро. Сплавы и биметаллы на его основе. М. Металлургия.-1979.

28.   Эллиот Р. П. Структуры двойных сплавов. т.1. М. Металлургия.-1970.-460с.

29.   Уильямс А., Гелат И., Конноли Дж. и др. Диаграммы фаз в сплавах. М. Мир.-1986.-272с.

30.   Барабаш О. М., Коваль Ю. Н. Кристаллическая структура кристаллов и сплавов. М. Наука.-1986.-586с.

31.   Шанк Ф. Структуры двойных сплавов. М. Металургия.-1973.-760с.

32.   Юм-Розери В., Рейнор Г. В. Структуры металлов и сплавов. М. Металлургия.-1959.-391с.

33.   Бонар А. А., Великанова Т. Я. и др. Стабильность фаз и фазовые равновесия в сплавах переходных металлов. Киев, Наукова думка.-1991.-200с.

34.   Багдарасян Р. И., Кацнельсон А. А., Силонов В. М. Расчет ближнего порядка в a-AgZn методом псевдопотенциалов.- Изв. АН Армянской ССР, Физика.-1976.-т.11.-№5.с.407-408.

35.   Багдарасян Р. И., Кацнельсон А. А., Силонов В. М. Атомный ближний порядок в a-AgZn. Кристаллография.-1977.-т.22.-вып.1.-с.191-196.

36.   Багдарасян Р. И., Кацнельсон А. А. - Кристалография.-1977.-т.22.-с.163.


Информация о работе «Дiя атомiв у навколишньому середовищi»
Раздел: Физика
Количество знаков с пробелами: 49771
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
281937
0
0

... як абсолютна надсвi- домiсть. Iндивiдуальне 'Я' є вiдображенням абсолютного 'Я', абсолютної моральностi. Саме iндивiдуальному, емпiричному 'Я' протистоїть емпiрична природа 'не-Я'. Теоретична фiлософiя, усвiдомивши мiсце 'Я' i 'не-Я', протиставляє їх одне одному в межах абсолютного 'Я', неначе результат обмеження, роздiлу абсолютного. Керуючись таким методом протиставлення i синтезу, ...

0 комментариев


Наверх