Санкт-Петербургский государственный технологический институт
(Технический университет)
Кафедра технологии катализаторов
Факультет химической технологии органических веществ и
полимерных материалов
Курс 3
Группа 443
Учебная дисциплина ОХТ
Курсовая работа
Тема: «Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид»
Студент
Васина Е. В.
________________________
Личная подпись
Руководитель
профессор Власов Е. А.
________________________
Личная подпись
Оценка ________________________
________________________
Подпись руководителя
Задание
Обосновать выбор реактора для окисления SO2.
Получить максимальную степень окисления SO2, если изменяются давление, начальная температура и начальная концентрация (Х=f(P, TN, ZNA)).
Содержание
Введение
1. Краткие сведения о технологическом процессе
2. Математические модели химических реакторов
2.1. Реактор идеального вытеснения
2.2. Реактор полного смешения
3. Программы расчета и результаты
4. Обсуждение результатов
Выводы
Список использованной литературы
Введение
Одним из основных элементов любой химико-технологической системы является химический реактор. Химический реактор – это аппарат, в котором осуществляются химические процессы, состоящие из реакций массо- и теплопереноса. Типичные реакторы – промышленные печи, контактные аппараты, реакторы с механическим, пневматическим и струйным перемешиванием, варочные котлы, гидрататоры и др.
Все аппараты, расположенные до реактора, необходимы для подготовки сырья к химической обработке; аппараты после реактора – для разделения получившихся продуктов. От правильности выбора реактора и его совершенства зависит эффективность всего технологического процесса.
Основные требования к промышленным реакторам.
Максимальная производительность и интенсивность работы.
Высокий выход продукта и наибольшая селективность процесса, обеспечиваемые оптимальным режимом работы реактора: температурой, давлением, концентрацией исходных веществ и продуктов реакции, применением подходящего катализатора.
Минимальные энергетические затраты на перемешивание и транспортировку материалов через реактор, а также наилучшее использование теплоты , подводимой в реактор для нагрева реагирующих веществ до оптимальных температур
Легкая управляемость и безопасность работы, обеспечиваемые рациональной конструкцией реактора и малыми колебаниями параметров технологического режима.
Низкая стоимость изготовления реактора и ремонта его, достигаемые простотой конструкции и применением дешевых конструкционных материалов: черных металлов, силикатных изделий, наиболее дешевых пластмасс.
Устойчивость работы реактора при значительных изменениях основных параметров режима.[1]
Обычно не удается реализовать процесс в реакторе таким образом, чтобы были удовлетворены одновременно все предъявляемые к нему требования в виду их противоречивости. Приходится вырабатывать наиболее рациональные и экономичные решения, обеспечивающие поддержание заданных значений основных параметров процесса: времени реакции, температуры в различных точках реакционной зоны, давления, степени перемешивания реагирующих веществ, изменения концентраций реагентов по высоте (длине) реактора.
При исследовании работы реакторов составляется математическое описание, под которым понимается система уравнений, позволяющих определить изменение в нём концентраций, температуры, давления и других параметров.
Химические реакторы отличаются друг от друга по конструктивным особенностям, размеру, внешнему виду. Наиболее значимы следующие признаки классификации химических реакторов и режимов работы: режим движения реакционной смеси, условия теплообмена в реакторе, фазовый состав, способ организации процесса, характер изменения параметров процесса во времени, конструктивные характеристики.
Так в зависимости от режима движения реакционной смеси существуют реакторы смешения и вытеснения. Реакторы смешения – ёмкостные аппараты с механическим перемешивающим устройством (мешалкой) или циркуляционным насосом. Реакторы вытеснения – трубчатые аппараты, имеющие вид удлинённого канала. По применяемому давлению различают вакуумные реакторы и реакторы, работающие под атмосферным и высоким давлением.
В зависимости от температурного режима выделяют реакторы адиабатические, изотермические и политермические. При отсутствии теплообмена с окружающей средой химический реактор называется адиабатическим. Вся теплота, выделившаяся или поглотившаяся в нём, идёт на обогрев или охлаждение реакционной смеси. Существуют изотермические реакторы, в которых обеспечивается постоянство температуры за счёт теплообмена с окружающей средой.
В политермическом режиме часть тепловой энергии химической реакции идёт на изменение теплосодержания системы, а часть – на теплообмен с окружающей средой.
При проектировании реактора необходимы сведения о кинетике химической реакции и производительности реактора. Разрабатывая схему реактора, нужно решить, будет ли реактор работать непрерывно или периодически, определить модель реактора и указать способы подвода или отвода теплоты.
... удобным и понятным как для специалиста-проектировщика, так и для любого пользователя САПР. Основные средства взаимодействия человека и машина - это различные диалоговые системы. САПР трубчатых реакторов для производства малеинового ангидрида использует следующие типы диалога: 1) диалог типа "меню". Данный тип меню показан на рисунке 4. На начальном этапе работы САПР в подсистеме ввода и ...
... , количество аппаратов в технологическом процессе, высокое содержание SO2 в газе после контактного аппарата показывает низкую степень использования SO2 , поэтому данные аппараты в производстве серной кислоты не используюися. - Контактный аппарат с двойным контактированием: ДК позволяет достичь того же минимального содержания SO2 в выхлопных газах, что и после химической очистки. Метод основан на ...
... период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики. 1.3 Особенности альтернативной водородной энергетики Водородная энергетика включает следующие основные направления: Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; ...
... условия сдвига равновесия вправо .... Глава 2. Прикладные аспекты преподавания темы «Закономерности течения химических реакций» Прикладные аспекты преподавания темы «Закономерности течения химических реакций» на мой взгляд удобнее всего рассматривать на уроках, которые следуют сразу за рассмотрением скорости реакции и химического равновесия, - это производство серной кислоты. 2.1 ...
0 комментариев