2. Частицы в кластере
Естественно спросить, каковы нижняя и верхняя границы числа частиц в кластере? Ответ на первую половину вопроса очевиден: минимальное число членов, образующих группу, равно двум. Верхняя граница, напротив, размыта и неотчетлива. Но ясно, что она должна находиться в той области, где добавление еще одного члена уже не изменяет свойств кластера: в этой области и заканчивается переход из количества в качество. Ниже мы увидим, что эта граница не вполне однозначна, но практически большая часть изменений, существенных для химика, заканчивается при ~103 частицах в группе.
Следует различать свободные кластеры и стабилизированные теми или иными факторами; в последнем случае кластер имеет более сложный состав и приобретает структуру, в которой целесообразно выделять «тело» кластера (т. е. собственно группу взаимодействующих частиц рассматриваемого типа) и стабилизирующие элементы, например «оболочку» из лигандов, или центральную частицу (часто это ион), или совокупность того и другого. Наличие или отсутствие стабилизации резко сказывается на поведении кластеров, и прежде всего на продолжительности их жизни: для стабилизированных кластеров она такая же, как для обычных молекул, для нестабилизированных нижней границей времени жизни разумно считать продолжительность столкновения в газокинетическом смысле, т. е. 10~13-К)-12 с; то же можно распространить и на простые и сложные кластеры в жидкой фазе. С точки зрения химика, кажется правильным считать кластерами только такие образования, которые существуют достаточно долго, чтобы участвовать в химическом превращении в качестве самостоятельной единицы. При этом остается неясным, при какой же продолжительности жизни кластеров их образование становится кинетически ощутимым. Фактических данных для ответа на этот вопрос мало, но с ростом «разрешающей способности» экспериментальных методов постепенно выясняется важная кинетическая роль даже весьма короткоживущих состояний.
Разнообразие типов кластеров определяется возможностью сочетания различных сред и способов стабилизации с множеством вариантов построения тела кластера из частиц той или иной природы.
Не приводя здесь развернутой классификации, поясним это на примере. В системах, состоящих из компонента А, образующего тело кластеров Ag, и компонента В, функция последнего может отвечать одному из четырех вариантов: 1) ВАЯ: В - заряд (электрон, позитрон) или центральная частица (ион, молекула); 2) АВ,: В - лиганд; 3) АА, Воэ: В - матрица; 4) AgB: В - второй компонент тела кластера. Реализация этих вариантов различна в газовых, жидких, аморфных и кристаллических средах. Так, для варианта «BAg» примерами являются соответственно: зародыши пара, конденсирующегося на молекулярных ядрах; сольваты ионов и молекул в жидких растворах; металлические кластеры в металлсилицидных, металлфосфидных и других стеклах; субоксиды щелочных металлов. Для варианта «АВ» примерами служат мицеллы поверхностно активных веществ (ПАВ) в жидких средах; кластеры воды в аморфных органических полимерах; кластерные кристаллы (металлы в цеолитах) и, наконец, адсорбаты кластерной дисперсности для сред, представляющих собой межфазные поверхности. Аналогично этому для разных сред легко найти случаи, отвечающие вариантам «АгВг» и «AgBj». При трех компонентах - А, В и С - возможны уже десять вариантов их функций в построении тела кластера и его стабилизации. И почти для каждой из сред, включая меж-, фазные поверхности, можно указать примеры реализации этих вариантов.
Таково разнообразие наших объектов.
3. Методы исследования
В принципе для исследования свойств и поведения кластеров различных типов могут быть использованы решительно все методы, какими пользуется химия вообще. Однако пригодность и степень эффективности того или иного из них критическим образом зависят от устойчивости исследуемых кластеров; естественно, что к устойчивым системам применимы более многочисленные и более разнообразные по принципам методы наблюдений и измерений. Кроме того, имеет значение, находятся кластеры в равновесии со средой или нет: в первом случае концентрация их постоянна во времени, хотя и мала для короткоживущих объединений, неравновесные же группы частиц приходится специально создавать.
При малой продолжительности жизни кластеров внимание исследователя невольно сосредоточивается на процессах их возникновения и разрушения, если же продолжительность жизни велика, то занимаются прежде всего изучением «стационарных» свойств этих объектов.
При работе с прочно стабилизированными или хотя бы с равновесными кластерами их приготовление и исследование легко могут быть разделены во времени и пространстве.
Для получения стабилизированных кластеров чаще всего используют процессы образования новой фазы: эти процессы буквально останавливают в их зародыше, фиксируя тем или иным способом возникающие группы частиц.
Принцип остановки агрегации лежит в основе различных способов синтезов кластерных соединений из одноядерных и олигоядерных комплексов металлов. Этот же прием хорошо известен в гетерогенном катализе при получении «сверхвысокодисперсных» металлов-катализаторов, закрепленных на носителях.
Своеобразными носителями для металлических кластеров стали в последние годы матрицы из твердых газов, на которых конденсируют пары металлов. Это важный и обещающий способ контролируемой стабилизации небольших металлических кластеров и вместе с тем способ синтеза не обычных кластерных соединений. Используя матрицы из твердой окиси углерода, получили, например, Ni2CO и Ni4CO, а на матрицах из твердого кислорода - Rh2(O2)n (л=1-4) и Rhs(O2)n, (m=2 или 6).
Реже для получения стабилизированных кластеров при" бегают к дезагрегации сплошной фазы. Интересный при" мер - введение жидких металлов в цеолиты под давлением» после снятия давления 15-20-атомные кластеры галлия» олова, висмута остаются замурованными в полостях цеолита, образуя своего рода «кластерный кристалл». Это создает редкую возможность изучать поведение упорядоченного коллектива кластеров.
Для исследования стабилизированных кластеров применяют те же методы, что и в физической химии вообще, чаще других - спектральные (особенно в дальней инфракрасной области) и радиоспектроскопические, прежде всего методы ядерного магнитного резонанса (ЯМР).
Техника исследований кластеров приобретает своеобразие тогда, когда объекты являются неравновесными и короткоживущими. В таких исследованиях - они относятся главным образом к кластерам в газовой среде - экспериментальные устройства включают в себя сопряженные узлы генерации, выделения (если нужно) и собственно исследования кластеров.
Неравновесные кластеры в газовой среде получают путем адиабатического расширения пара в устройствах различных типов. Наибольший стаж имеет камера Вильсона (система с поршневым расширением). Много позже были созданы методы работы с потоками, расширяющимися в сверхзвуковых соплах; сюда же можно отнести и технику молекулярных пучков.
Кстати сказать, пучки кластеров дейтерия или трития предложено вводить в горячую плазму при управляемом термоядерном синтезе. Эффективность такого способа подачи топлива определяется значительно большей плотностью вещества в кластерных пучках по сравнению с молекулярными. Этот проект - главная цель фундаментальных исследований кластеров, которые ведутся в одной из крупных лабораторий ФРГ в Карлсруэ.
Заряженные кластеры в газовой среде генерируют посредством электрического разряда или (ныне все чаще) путем воздействия ионизирующих излучений. Различные излучения используют для создания заряженных кластеров и в газах, и в. конденсированных средах. Ионная бомбардировка поверхности твердых тел позволяет получать также и заряженные, и нейтральные кластеры в паровой фазе обычно в сверхравновесных концентрациях.
Экспериментальные трудности исследования свободных кластеров в неравновесных системах усугубляются практической невозможностью получения кластеров одного размера. Поэтому измеряемые величины часто представляют результат усреднения, при котором возможно «замазывание» немонотонных зависимостей свойство - число частиц в кластере.
Наиболее распространенным и наиболее прямым методом наблюдения кластеров в газовой фазе является в настоящее время масс-спектрометрия. Предложено много вариантов систем напуска, обеспечивающих доставку кластеров из зоны, где они образовались, в ионный источник спектрометра. С этой стороной техники дело обстоит достаточно удовлетворительно. Важно также уменьшить разрушение кластеров в ионном источнике под влиянием ионизирующего излучения. Традиционные приборы, в которых ионизация объекта достигается электронным ударом, в этом отношении малоудачны; эффективнее фотоионизационные источники, хотя и в этом случае первоначальные концентрации кластеров могут искажаться. Разумеется, степень искажения сильно зависит от прочности кластера, а также от продолжительности промежутка времени между ионизацией и регистрацией иона. («Времяпролетная» масс-спектрометрия в этом смысле предпочтительнее.)
Для характеристики ионных кластеров в газах масс-спектрометрия также весьма эффективна, но здесь распространен и другой метод-измерение подвижности ионов. В 70-х годах для исследования свободных кластеров, возникающих в сверхзвуковых газовых струях, был применен метод дифракции электронов; удалось регистрировать дифракционную картину от кластеров аргона из ~50 атомов с возрастом ~2-10~4 с.
Перспективна и оптическая спектроскопия кластерных пучков: их низкая температура сильно упрощает картину спектра и делает возможным его анализ.
В исследованиях поверхностных кластеров эффективна автоионная микроскопия и фотоэлектронная спектроскопия.
В последнее время приобретают значение новые спектроскопические методы изучения вещества - измерения рентгено- и фотоэлектронных спектров, но в исследованиях свободных кластеров их еще не применяли, тем более что анализ полученных данных здесь сложен и неоднозначен. По-видимому, наиболее информативными станут комплексные методы, сочетающие масс-спектрометрию, в особенности времяпролетную масс-спектрометрию высокого разрешения, со спектральными методами разных диапазонов частот. В частности, большой интерес представляет лазерная спектроскопия комбинационного рассеяния света. Этот метод эффективен для измерения низких частот колебаний, характерных для связей между частицами в кластерах. Еще важнее, что он может обеспечить весьма быструю, до времен порядка 10~8 с, регистрацию спектров, а значит, исследование короткоживущих кластеров.
Вторая большая категория методов исследования - расчетно-теоретическая.
Компьютерная техника оказывается «математическим микроскопом», а иногда и сверхскоростной кинокамерой или даже и тем и другим, словом, инструментом, который позволяет наблюдать быстрые превращения кластеров.
Ценность машинных методов тем выше, чем труднее объект для прямого экспериментального изучения; таковы в особенности свободные кластеры из нескольких десятков частиц.
Расчетно-теоретические методы исследования следует подразделить по уровню детализации на молекулярно-физические и квантовомеханические. Методы, опирающиеся на идеи молекулярной физики, состоят в машинном анализе поведения кластера как системы N частиц, взаимодействие между которыми описывается некоторым потенциалом (например, потенциалом Лен нарда-Джонса). В квантово-механических методах кластер рассматривается как молекула; при тех или иных допущениях исследуются взаимодействия электронов в этой системе. Расчет свойства кластеров на основе представлений молекулярной физики был начат в связи с необходимостью определения термодинамических характеристик малых зародышей в теории конденсации: совершенно очевидно, что «капиллярное приближение» классической теории конденсации, основанное на использовании величины поверхностной энергии малых капель, непригодно для частиц из ~ 10 атомов. Первая работа в этом направлении (в ней были рассмотрены кластеры максимум из восьми частиц) относится к 1952 году. В такого рода вычислениях и время счета, и необходимый объем машинной памяти возрастают пропорционально кубу числа атомов в кластере, поэтому исследования более крупных кластеров начались много позже, примерно через полтора десятилетия, когда возможности вычислительной техники стали достаточными, а решаемые задачи - еще более актуальными (к общим потребностям развития теории конденсации добавились запросы со стороны технологии получения конденсированных пленок, в особенности в технике полупроводников и электронике). Со второй половины 60-х годов начинается разработка специальных расчетных методов для исследования свойств кластеров на основе представлений молекулярной физики.
Ныне распространен метод молекулярной динамики и метод Монте-Карло.
Сущность метода молекулярной динамики заключается в машинном решении уравнений движения системы из заданного числа частиц. Уравнения движения Ньютона связывают между собой координаты, скорость и энергию частицы; их интегрирование дает координаты и скорости всех частиц кластера в функции от времени. Свойства кластера находят, усредняя эти данные. Применение метода Монте-Карло опирается на эргодическую гипотезу статистической механики о возможности представления временной последовательности случайных конфигураций динамической системы мгновенным состоянием статистического ансамбля. В соответствии с этим принцип расчета состоит в усреднении по ансамблю случайных конфигураций, вероятность каждой из которых зависит от ее энергии экспоненциально.
Общим для обоих методов является вопрос о потенциале UN, описывающем взаимодействие N частиц в кластере. Вообще говоря, этот потенциал есть функция Хх.., X;.., Xv, где X; - ряд чисел, описывающих положение центра и ориентацию t'-й молекулы. Достаточно обоснованной является аппроксимация UN суммой потенциальных энергий парных взаимодействий X,).
Формы и параметры потенциала Utj могут быть различными; часто заменяют X;, X] просто на межмолекулярное расстояние rtj. Наиболее популярны (в силу простоты и удобства) потенциалы Леннарда-Джонса (обычно т=6, п=12) и потенциал Морзе. В случае многоатомных частиц, образующих кластер, выражения усложняются, так как необходим учет ориентации. Так, для молекул воды предложено несколько потенциальных функций; одной из наиболее простых и удачных является потенциал U (X;, Xj^Ut (rtJ) + S (rti) UEL (Х„ X,-), (4) где UEL - потенциал взаимодействия двух массивов заряда (отражающих распределение зарядов в молекуле воды), который учитывает водородные связи между молекулами. Все эти формулы являются эмпирическими; их параметры определяют по свойствам соответствующих веществ.
Методы молекулярной динамики и Монте-Карло дают сведения прежде всего о термодинамических характеристиках кластеров, а отчасти и об эволюции структуры (взаимного расположения частиц) кластера во времени.
Результаты большинства машинных исследований термодинамических свойств кластеров относятся не к реальным, а к гипотетическим объектам, например к кластерам из частиц, которые взаимодействуют между собой, согласно потенциалу Леннарда-Джонса, или к чисто «кулонов-ским» кластерам и т.д. Поэтому не удивительно, что при исследовании энергетических характеристик кластеров разными методами получаются существенно различные результаты в отношении величины избыточной энергии и ее зависимости от числа атомов. Однако многие выводы, полученные 'для таких условных моделей, имеют общее значение и дают важные сведения о свойствах кластеров.
Более глубокий уровень детализации связан с применением квантовой механики.
Методы расчета кластеров были созданы в ходе развития теории химической связи; долгое время (до конца 60-х годов) объектами приложения этих методов были не кластеры, а обыкновенные молекулы. К квантовомеханическим расчетам кластеров приступили специалисты, шедшие с двух сторон: одни занимались многоядерными металлоорганическими неорганическими комплексами, другие исследовали кластеры в качестве моделей твердого тела.
В обоих случаях кластеры первоначально были вспомогательной моделью, переходной к изучаемой, но постепенно выяснилась общность этих объектов.
Трудности расчета многоатомных молекул и недостаточная мощность компьютеров заставляли идти на многочисленные упрощающие допущения, поэтому в 60-х годах машинные исследования кластеров в квантовой химии исчислялись единицами. Число и эффективность исследований кластеров стали быстро возрастать с 70-х годов в связи с созданием новых методов квантовохимических расчетов, в особенности так называемого метода «X-рассеянных волн», словно специально задуманного для этих целей.
Квантовомеханические расчеты кластеров дают для химика результаты двоякого рода. Во-первых, они позволяют судить об энергетике кластеров, о зависимости энергетических характеристик от расположения атомов. (Заметим еще раз, что ныне от подобных расчетов ожидают прежде всего выяснения тенденций, характера зависимости, а не абсолютных значений тех или иных величин. Правда, результаты новейших расчетов позволяют надеяться и на большее.) Такие зависимости можно сопоставлять с результатами вычислений методами молекулярной динамики и Монте-Карло, использующими те или иные эмпирические потенциалы взаимодействий между атомами. Таким образом можно получить сравнительное представление о возможностях разных расчетных методов. Работы в этом направлении уже начаты; найдено качественное согласие выводов о наиболее устойчивой структуре 13-атомных металлических кластеров.
Во-вторых, квантовомеханические расчеты дают результаты, так сказать, незаменимые, относящиеся к электронному строению кластеров. Здесь опять-таки наибольший интерес представляет тенденция - как изменяется электронная структура объекта при переходе от одиночного атома (молекулы) к кластеру, а затем к микроскопическому кристаллу.
Объектами большинства квантовохимических исследований остаются простые кластеры, образованные атомами металлов и отчасти других элементов. Рекордными являются работы по расчету 40-50-атомных кластеров. Недавно проведены также некоторые работы, относящиеся и к более сложным веществам (фтористому водороду, хлористому бериллию и др.). Начаты исследования ионов, а также сольватированных электронов.
Многочисленны расчетные квантовохимические исследования, которые имеют своим объектом кластеры не как самостоятельные объекты, а как упрощенные модели твердого тела или его поверхности.
... же термодинамически обусловлено, как и возникновение вакансий в решетке кристалла при температурах выше абсолютного нуля. Рассматривая квазихимическое равновесие образования адсорбированных на поверхности кластеров. [Me] крист. и [Me] крист. Me (аде) Нетрудно убедиться, что на границе металла с собственным паром конденсация поверхностных кластеров ничтожно мала вплоть до точки плавления (иначе ...
... месторождений перерабатывается Сорским и Жирекенским горно-обогатительными комбинатами, оба они являются собственностью ОАО "Группа Сибирский алюминий". 3. Физико-химические свойства молибдена МОЛИБДЕН - (Molybdenum), Mo - химический элемент 6 (VI Б) группы периодической системы, атомный номер 42, атомная масса 95,94. Известен 31 изотоп молибдена с 83Мо по 113Мо. Из них стабильные: 92Мо, ...
... преломления, равном 1,48 для кремнийорганического полимера, и 1,49 для полиметилметакрилата, показатели преломления для нанокомпозитов составили 1,74. Проведенный анализ физико-химических свойств композиций на основе металлоорганосилоксанов дает возможность предположить, что данные материалы перспективны для создания на их основе оптически прозрачных диэлектрических наноматериалов для ...
... Сергеев А.М. Институциональный анализ инновационных кластеров / Вестник УГТУ, №1 - 2008. С. 77-91. 24. Сомова Е.Ю. Проблемы распада кластеров в экономическом пространстве современной Европы / Современная Европа, №1 – 2010. С. 58-67. 25. Татаркин А. Промышелнная политика как основа системной модернизации экономики России / Проблемы теории и практики управления, №1 - 2008. С. 11-19. IV. ...
0 комментариев