7. Фазовые переходы в кластерах

 

Фазовые переходы обнаруживаются в вычислениях уже для малых кластеров. Все же для еще меньших размеров понятие агрегатного состояния уже полностью утрачивает смысл, и на этом месте вновь возникает многократно обсуждавшаяся проблема о возможности непрерывного перехода от твердого состояния к жидкому, подобному критическому переходу в системах жидкость - пар. Первоначальная дискуссия между В. Оствальдом и Г. Тамманом (первый утверждал, а второй отрицал упомянутую возможность) оставила вопрос открытым. Много позже к проблеме вернулся Я.И. Френкель, который высказался в пользу существования критических явлений в системах жидкость - кристалл, тогда как Л.Д. Ландау отверг эту концепцию на том основании, что симметрия не может изменяться непрерывно. Казалось бы, вопрос уже решен раз и навсегда. Но теперь рассмотрение свойств кластеров наводит на мысль, что в таких нетривиальных системах с переменным числом атомов ситуация может оказаться и иной. Поэтому-то столь интересны едва начатые исследования равновесий «кристаллических» кластеров с жидкостью илигазом. Весьма существенны для химика электронные свойства кластеров. Они исследованы теоретически для ряда металлических систем; хотя результаты заметно зависят от выбранного метода вычислений, в общих чертах, качественно, они вполне согласуются друг с другом. Именно уже в малых кластерах из пяти-шести атомов происходит значительная делокализация валентных электронов металла и в энергетическом спектре электронного газа выделяются состояния, отвечающие электронным зонам массивного металла. (На примере нанесенных кластеров золота найдено экспериментально, что у переходных металлов с ростом кластера прежде всего формируется d-зона.) Вместе с тем степень делокализации электронов меньше, чем в большом кристалле, и соответственно работа выхода электрона имеет промежуточное значение между работой выхода для массы металла и потенциалом ионизации одиночного атома.

Один из очень интересных результатов таких исследований - установление важной роли поверхностных состояний электронов в металлических кластерах; дли этих состояний по сравнению с объемными состояниями характерен некоторый дефицит электронной плотности. Отсюда рост работы выхода электрона из кластера по сравнению с большим металлическим кристаллом; для 13-атомных кубооктаэдрических кластеров переходных металлов разница составляет 2 эВ.

Надо думать, вскоре теоретики извлекут из этого результата заключения непосредственно химического характера, в частности, относительно связи каталитической активности и реакционной способности с размером частиц и о морфологией поверхности.

Обратим внимание на важное обстоятельство, обычно упускаемое из виду при обсуждении результатов подобных расчетов: они относятся к кластеру с фиксированными положениями ядер. В действительности, как говорилось, эти положения подвержены сильнейшим флюктуациям, что вызывает и флюктуации заселенностей электронных уровней в кластере. Можно предполагать поэтому, что металлический кластер должен быть источником хаотически и быстро изменяющегося электрического поля. Должка колебаться во времени и работа выхода электрона из кластера. Наконец, отмечено, что взаимодействия движения электронов с колебаниями «решетки» кластера ослаблены, это ведет к «разогреву» электронного газа и возможности холодной эмиссии электронов. Возможно, что с этим связано заметное и зависящее от размера влияние подложки на свойства очень малых нанесенных металлических частиц: последние сравнительно легко отдают часть электронов носителю. Бесспорно значение этой возможности для катализа.

Таким образом, уже первые сведения об электронных свойствах кластеров представляют несомненный интерес для химика.

И структура, и свойства кластеров в конечном счете определяются химическими связями в них. Поэтому уместно несколько замечаний о связях в кластерах. Так, для металлорганических и бороновых кластерных соединений принимается, что в устойчивом g-атомном кластере «скелетных» электронов должно быть 2g±2m, где /я=0, или 1, или 2, а правила выбора т зависят от природы атомов.

На возможность достижения этого идеала или хотя бы приближения к нему сильно влияет конкуренция связей металл - металл и металл - лиганд, причем замена акцепторных лигандов донорными, как правило, повышает прочность кластера. Поэтому соединения с акцепторными лигандами способны давать' только достаточно большие металлические кластеры, в которых возникающий дефицит электронов распределяется между многими атомами. Эти общие правила позволяют понять также, почему число лигандов, приходящееся на один атом кластера-, падает с увеличением размера кластера (например, в ряду Со2(СО)8, Со4(СО)12, Со(СО)1в) и почему приобретение или реже утрата одного-двух электронов может вести к упрочнению системы, как, например, в анионах [Re4(CO)ie]2-, lOse(CO),8P- и [Ni, (СО)Х„12- и карбо-нилгидридных катионах [HRu3(CO)12,]+ и [НО83(СО)141. Для подобных металлических кластеров характерна сильная делокализация электронов. Вероятно, в той или иной степени это явление присуще и таким двух- и многокомпонентным кластерам, как полисоединения, содержащие не только атомы металла, но и кислород, хотя здесь число делокализованных электронов, естественно, меньше. В случае кластеров, стабилизированных только зарядом, существуют почти непрерывные переходы от электростатической стабилизации к валентной (квантовомеханической). Это достаточно ясно видно, например, при рассмотрении ряда: сольватированные анионы, сольватированный электрон в жидкой фазе, отрицательно заряженные кластеры в инертных газах и отрицательно заряженные кластеры в парах щелочных металлов: в последнем случав избыточный электрон не локализован, а «смешан» с электронным газом металла. То же самое относится и к положительно заряженным кластерам: на одном конце ряда находятся ионные кластеры с катионом в центре, на другом - металлические положительно заряженные кластеры типа, например.

Наиболее просты и доступны для обобщения соотношения, которые характеризуют однокомпонентные нестабилизированные кластеры. Здесь взаимодействие частиц удается описывать с помощью того или иного потенциала (или в последнее время квантовомеханические). На одном краю поля помещаются «кулоновские» кластеры с полностью локализованными электронами, на другом - металлические кластеры с почти полностью делокализированными. К «чистым» случаям надо отнести еще «вандер-ваальсовские» кластеры (из атомов инертных газов), удерживающиеся дисперсионными силами.

Переходя от кластеров атомов к кластерам молекул, мы должны будем добавить к этим предельным случаям множество смешанных, и прежде всего очень важный тип «кластеров на водородных связях» (конечно, в первую очередь кластеры воды).


8. Кластеры в химических превращениях

 

Распространенность кластерных форм и состояний в различных химических системах порождает догадку, что роль кластеров в химических превращениях важнее, чем это представляется по существующим изложениям кинетики и механизма реакций в руководствах и монографиях. Укажем некоторые общие положения, которые надо иметь в виду при исследованиях химического поведения кластеров. Частицы, входящие в состав кластера, отчасти сохраняют свою химическую индивидуальность, но кластер может выступать и в качестве самостоятельной химической единицы. Иначе говоря, переходная природа кластеров придает им двойственную или даже множественную способность часто в одних и тех же условиях. (В каталитических реакциях на кластерах, по-видимому, могут проявляться и реакционная способность кластера как целого, и реакционная способность его отдельных элементов: в одних стадиях одно, в других - другое).


Список используемой литературы

 

1.   «Кластеры в физике, химии, биологии» Лахно В.Д., 2001 г.

2.   «Кластеры: получение и реакционная способность» Смирнов В.В., Тюрина Л.А., 2002 г.

3.   «Кукурбитурил: играем в малекулы» В.П. Федин, О.А. Герасько, 2000 г.

4.   «Нанотехнологня: физикохимия нанокластеров» Суздалев Игорь Петрович, 2006 г.


Информация о работе «Изучение кластеров и их свойств в области химии»
Раздел: Химия
Количество знаков с пробелами: 49234
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
16533
0
0

... же термодинамически обусловлено, как и возникновение вакансий в решетке кристалла при температурах выше абсолютного нуля. Рассматривая квазихимическое равновесие образования адсорбированных на поверхности кластеров. [Me] крист. и [Me] крист. Me (аде) Нетрудно убедиться, что на границе металла с собственным паром конденсация поверхностных кластеров ничтожно мала вплоть до точки плавления (иначе ...

Скачать
32564
0
4

... месторождений перерабатывается Сорским и Жирекенским горно-обогатительными комбинатами, оба они являются собственностью ОАО "Группа Сибирский алюминий". 3. Физико-химические свойства молибдена МОЛИБДЕН - (Molybdenum), Mo - химический элемент 6 (VI Б) группы периодической системы, атомный номер 42, атомная масса 95,94. Известен 31 изотоп молибдена с 83Мо по 113Мо. Из них стабильные: 92Мо, ...

Скачать
68855
3
25

... преломления, равном 1,48 для кремнийорганического полимера, и  1,49 для полиметилметакрилата, показатели преломления для нанокомпозитов составили 1,74. Проведенный анализ физико-химических свойств композиций на основе металлоорганосилоксанов дает возможность предположить, что данные материалы перспективны для создания на их основе оптически прозрачных диэлектрических наноматериалов для ...

Скачать
68886
1
5

... Сергеев А.М. Институциональный анализ инновационных кластеров / Вестник УГТУ, №1 - 2008. С. 77-91. 24.  Сомова Е.Ю. Проблемы распада кластеров в экономическом пространстве современной Европы / Современная Европа, №1 – 2010. С. 58-67. 25.  Татаркин А. Промышелнная политика как основа системной модернизации экономики России / Проблемы теории и практики управления, №1 - 2008. С. 11-19. IV.  ...

0 комментариев


Наверх