2. Исследования по теории чисел
В исследованиях Буняковского в области теории чисел видны непосредственная преемственность с трудами Эйлера, прекрасное знание работ Лежандра и Гаусса.
Первой его работой в этой области является статья «Исследование о числах»[2] (она была также первой работой, представленной им Петербургской академии наук).
Остроумно и с большим мастерством Буняковский выполняет различные преобразования в следующих трех своих работах по теории чисел, относящихся к началу 30-годов[3]. Они посвящены сравнениям второй и третьей степеней.
Одной из первых на русском языке оригинальных работ по истории математики, содержащей интересные сведения, является «Краткий исторический обзор успехов теории чисел» (1835г.) Буняковского. В двух работах, относящихся к концу 30-х годов, Буняковский исследует простые числа.
Буняковский стремится расширить область применения теории чисел. В этом направлении он выполнил две работы: в одной из них теория чисел применена к вопросам элементарной геометрии, в другой – к вопросам алгебры[4]. Буняковский доказал, что из всех описанных около круга правильных многоугольников один только квадрат имеет периметр, соизмеримый с радиусом; из всех вписанных в круг правильных многоугольников один только шестиугольник имеет периметр, соизмеримый с радиусом, и один только треугольник имеет апофему, соизмеримую с радиусом; линия, проведенная из центра круга к вершине угла описанного правильного многоугольника, соизмерима с радиусом только для треугольника.
К началу 40-годов относятся статья Буняковского о решении одной задачи диофантова анализа и заметка о применении факториального бинома к решению неопределенных уравнений первой степени[5].
Все рассмотренные теоретико-числовые работы Буняковского относятся к алгебраической теории чисел, которую и в дальнейшем он продолжал пополнять важными результатами. В конце 40-х годов Буняковский занялся исследованием также аналитических методов в теории чисел, изучением сумм делителей чисел. Результаты этого исследования он затем применил к квадратичным формам[6]. В работе о различных новых формулах, относящихся к сумме делителей чисел (1850г.), Буняковский, широко использует разложение функций в степенные ряды.
Применяя к изучению квадратичных форм формулы для сумм делителей чисел, как формулу Эйлера, так и свои формулы, и используя свою теорему о сумме делителей квадратов и удвоенных квадратов, Буняковский разработал новый метод представления целых чисел с помощью квадратичных форм. Особое место занимают утверждения Буняковского, касающиеся простых чисел.
Основной аналитический метод в теории чисел – разложение функций в ряды – ведет свое начало от Эйлера (1748г.). Эйлер применил Диофантов анализ для освобождения от иррациональностей при неопределенном интегрировании. Буняковский показал, что и, наоборот, с помощью неопределенного интегрирования можно получить результаты, полезные при рассмотрении задач диофантова анализа[7].
Учение о многочленах Буняковский пополнил интересными результатами теоретико-числового характера. В этом отношении обращает на себя внимание его работа о числовых делителях целых рациональных функций[8]. Основным ее результатом является метод для нахождения наибольшего делителя N всех значений многочлена f(x) с целочисленными коэффициентами, принимаемых им при целочисленных значениях х.
Летом 1856 года Буняковский представил Академии наук свою работу «Опыт математической методологии, приложено к теории чисел». Работа осталась незаконченной и не была опубликована. Основное ее содержание составляет систематическая и полная для того времени классификация методов и приемов исследования, применяемых в теории чисел, а также свод важнейших теорем, различных формул и таблиц по теории чисел.
Теоретико-числовые работы Буняковского[9], относящиеся к концу 50-х годов, содержат решение некоторых частных вопросов алгебраической теории чисел.
В 1865 году Буняковский опубликовал в «Записках Академии наук» работу, посвященную решению предложенных Бонкомпаньи (1864г.) задач о нахождении целочисленных арифметических прогрессий сумма кубов n последовательных членов которых равна кубу некоторого числа, кубу следующего члена прогрессии.
В конце 60-х годов появились работы Буняковского по теории вычетов. Одним из наиболее интересных результатов, полученных им в этой области, является доказательство закона взаимности простых чисел.
Буняковский с большим вниманием отнесся к трудам русского математика-самоучки И.М. Первушина (1827-1900), воспитанника Пермской духовной семинарии и Казанской духовной академии. Первушин, проявив исключительное трудолюбие и поразительную настойчивость, выполнил чрезвычайно кропотливые и весьма сложные исследования, характеризующие его как замечательного вычислителя, талантливого математика. Полученные результаты он на протяжении многих лет, начиная с 1977 года, посылал в Петербургскую академию наук, где их большей частью рассматривал Буняковский.
Определенный интерес представляет статья Буняковского «Об одном видоизменении способа, известного под названием Эратосфенова решета» (1882г.). В отличие от Эратосфена Буняковский выделяет из последовательности испытуемых чисел простые числа, рассматривая отдельно числа, оканчивающиеся на 1, на 3, на 7, на 9, и используя при этом решения вспомогательных неопределенных уравнений первой степени (довольно простого вида). Такой прием оказывается полезным. Другие теоретико-числовые работы Буняковского, опубликованные в 80-е годы, связаны с рассмотрением различных свойств числовой функции Е (х), как использованных ранее Буняковским при решении ряда вопросов теории делимости, так и некоторых новых.
Последней опубликованной работой Буняковского является «Заметка об одной формуле, относящейся к теории чисел»[10].
В теоретико-числовых работах Буняковский затрагивал различные вопросы. В них он решал некоторые новые задачи, предлагал новые приемы решения задач, рассмотренных другими учеными. Буняковский пополнил теорию чисел многими результатами, однако эти результаты большей частью носили частный характер и потому не оказывали ощутимого влияния на научные интересы петербургских математиков. Они оствалисьв стороне от основного направления теоретико-числовых исследований Петербургской математической школы, сложившегося в трудах Чебышева и его учеников.
... и сложные условия того времени и свои тяжелые настроения, которые их порой охватывали под влиянием житейских неудач, борьбы между личным и общественным, между чувством и долгом. Среди женщин-математиков наиболее известны Гипатия Александрийская, Софья Васильевна Ковалевская, Нина Карловна Бари, Софья Александровна Яновская. Описанию жизни и деятельности этих ученых и посвящена данная работа. ...
... талантливом молодом человеке. Когда отец, настойчиво требовавший его возвращения, прекратил высылсть сыну деньги, его пристроили в Париже преподавателем математики в коллегии Генриха IV. Вскоре, однако оба молодых человека возвратились в Россию, в Петербург. Они сразу были приглашены преподавателями различных средних и высших учебных заведений, но вскоре были приняты в Академию сначала в ...
... сделалась университетской наукой, была преподаваема в университетах и в большой и в большей или меньшей степени, разрабатывалась профессорами университетов. Здесь предлагается краткий очерк развития преподавания математики и самодеятельности русских ученых по университетам. Московский университет, старейший из русских, существуя почти 150 лет, насчитывает много поколений по математике. А.А. Барсов ...
... научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности. Заключение В исследовании внимание уделяется поиску конкретных новых событий и явлений и последовательному изложению выверенных фактов истории развития методики преподавания математики в России
0 комментариев