2.1 Следствия первого кризиса и попытки его преодоления

Открытие несоизмеримости оказало огромное влияние на греческую мысль. «Именно с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности»[1, стр. 235]. Дело в том, что до открытия несоизмеримости греки находили общую меру при помощи алгоритма Евклида. Но случае несоизмеримых отрезков алгоритм переставал быть конечным. Этот факт побудил греков к рассмотрению бесконечности. Однако понятие бесконечности давалось грекам с трудом и глубоко смущало их. Трудности связанные с понятием бесконечного привели к еще большему кризису в математике и нашли отражение в знаменитых апориях Зенона Элейского. Эти апории(парадоксы) вскрывали противоречия между теми кто считал что материя и время бесконечно делимыи теми, кто считал что существуют первичные неделимые единицы. Приведем самые интересные для затронутой темы парадоксы по [10].

1. Парадокс «Дихотомия» построенный в предположении, что пространство делимо до бесконечности.

Движущееся тело никогда не достигнет конца пути, потому что сначала оно должно дойти до середины отрезка, потом до середины остатка отрезка, потом до четверти отрезка и так далее. Таким образом тело должно пройти бесконечный набор точек.

2. Парадокс «Стрела», построенный в предположении, что время пространство и время состоят из неделимых элементов.

Стрела в некоторый момент времени находится в точке в неподвижном состоянии. Так как это верно в каждый момент времени, то стрела покоится.

Несмотря на то что, в этих парадоксах отражено незнание греками понятия предела, эти парадоксы не так просты. Вопросы, поставленные Зеноном, обсуждались философами и математиками во все времена. В частности такими математикам как Гильберт и Вейль. Но для греческих математиков вопрос был в том, допустимо или не допустимо использовать бесконечность в математике. Этот вопрос в греческой математике стоял очень остро. Например, Протагор(V в. до н.э) отрицал даже все математические абстракции[10, стр. 94].

Первая концепция бесконечного, которая стала общепринятой в греческой математике, была выдвинута Анаксагором(V в. до н.э.) и развита Евдоксом Книдским. Евдоксу принадлежит метод исчерпывания, который был призван разрешить проблему несоизмеримых. Для этого он строит теорию величин аксиоматически. Величины в понимании Евдокса имеют различную природу - отрезки, числа, время, но все величины характеризуются[1]:

1. Транзитивностью. «Равные одному и тому же равны между собой».

2. «Если к равным прибавляются равные, то и остатки будут равны».

3. «Если от равных отнимаются равные, то и остатки будут равны».

4. Эквивалентностью. «...совмещающиеся друг с другом равны между собой».

5. Все величины одного вида упорядочены, т.е.

 .

6. «...целое больше части».

7. «величины имеют отношение друг с другом, если они взятые кратно могут превзойти друг друга» (или в современной трактовке: если , то найдется  такое что ).Эту аксиому Евдокс вводит, чтобы исключить бесконечно большие величины. Она известна в математике под названием аксиомы Архимеда, однако Архимед не только не был ее автором, но даже подчеркивал, что это аксиома была известна до него[2, стр. 148].

Построение этой аксиоматики было значительным шагом в сторону теории действительного числа.

На множестве величин Евдокс определил операцию отношения. Два отношения  и  считались равными если для любых целых чисел  выполнялось одно из следующих условий:

1.  и  

2.  и  

3.  и .

Аналогичным способом определялись и неравенства между отношениями. Этот оператор разбивал все величины на классы пропорциональных друг другу. Евдокс также установил транзитивность операции отношения.

Как отмечено в [2, стр. 149], введение единозначного оператора отношения для любого вида величин, подразумевало что для любой пары величин  а величины  найдется величина  такого же вида, что и , такая что , но явно это положение не формулировалось и не рассматривалось.

Как видно из определения, каждое несоизмеримое отношение определяло два класса рациональных чисел. Существенным пробелом являлось то, что не устанавливалось обратное соответствие.

Но основе построения Евдокса возник метод исчерпывания, основанный на аксиоме Архимеда. Теперь математики не приписывали длины отрезкам, а сравнивали их с другими отрезками. «... метод исчерпывания ... позволил грекам решать задачи, ставшие впоследствии предметом исчисления бесконечно малых»[1, стр. 239].

После разгрома античной культуры, ее достижения подхватили арабы, в том числе и «Начала» Евклида в которых описаны иррациональные числа. Однако математика арабов носила больше практический, вычислительный характер. «Преобладающее место ... заняло создание разнообразных вычислительных методов и измерительных средств для нужд торговли, административного управления, землемерия, картографии, астрономии, календаря и т.д.»[11, стр. 98]. Это способствовало тому, что арабы оперировали с иррациональными числами формально не уделяя особого внимание теоретическому обоснованию иррациональных чисел. По этой причине грань между «настоящими» числами и иррациональными постепенно стиралась. Также были сведены воедино несоизмеримость геометрических отрезков и арифметическая иррациональность.

В 1077 Омар Хайям, пытаясь преодолеть проблему несоизмеримости, в своем труде «Комментарии к трудностям во введениях книги Евклида» определяет, два отношения равными, если равны все соответствующие неполные частные разложения этих дробей в непрерывные дроби. Хайям показал равносильность этого определения с античным и ввел умножение и деление отношений. В заключении своей работы Хайам приходит к необходимости обобщения понятия числа и расширения его на иррациональные числа. Идеи Хайама получили признание среди арабских математиков. Его идеи развил Ат-Туси, а в XIII в. каждое отношение с уверенностью приравнивалась к числу[11, стр. 101]. Здесь интересно отметить, что в Европе до XVI в. существовало представление о несоизмеримых.

В Средневековой Европе вопросы, связанные с бесконечностью имели большей частью схоластический и метафизический характер.

 



Информация о работе «Зарождение и создание теории действительного числа»
Раздел: Математика
Количество знаков с пробелами: 45717
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
53496
0
0

... военно-операционные узлы и контрольно-измерительные пункты, подготавливаемые и обслуживаемые соответствующими предприятиями и учреждениями (частями связи) Народного комиссариата связи. Технической предпосылкой зарождения и развития теории глубокого боя стало масштабное перевооружение Красной Армии после окончания гражданской войны. В конце 1920-х и на протяжении большей части 1930-х годов ...

Скачать
40799
0
0

... что все события происходили в геологическом масштабе времени. Относительно простой, примитивный организм не мог возникнуть мгновенно даже после того, как на первобытной Земле были созданы условия, благоприятные для зарождения жизни. Протеиноиды – термические белки. Образуются при самопроизвольном синтезе аминокислотных цепей. Длина и состав протеиноидов зависит от состава исходной аминокислоты, ...

Скачать
167437
1
1

... человеческих знаний зародилась именно в меркантилизме. В 1615г. в «Трактате политической экономии» французский представитель меркантилизма А. Монкретьен (1575-1621) предложил специальный термин для характеристики экономической теории в эпоху меркантилизма – «политическая экономия», который прочно укоренился в экономической науке и использовался весьма длительный период. Политическая экономия в ...

Скачать
43402
1
1

... обратить взор на вклад именно этого ученого в развитие нефтяной науки и нефтедобычи России в целом. По мнению автора и многих исследователей именно И.М.Губкину принадлежит роль в зарождении науки о разработке нефтяных месторождений, что прослеживается в материалах приводимых в следующем параграфе. 2. Зарождение науки о разработке нефтяных и газовых месторождений Для осуществления управления ...

0 комментариев


Наверх