5.4 Донні осідання океану

Щорічно біля г С відкладається на дні океану, частина цих відкладень є органічним вуглецем, а інша частина - . Органічний вуглець є основним джерелом енергії для організмів, що мешкають на дні моря, і лише мала його частина зберігається в осіданнях, виняток становлять прибережні зони і шельфи. В деяких обмежених областях (наприклад, в деяких районах Балтійського моря) вміст кисню в придонних водах може бути дуже низьким, відповідно зменшується швидкість окислення і значні кількості органічного вуглецю осяідають. Області з безкисневими умовами збільшуються внаслідок забруднення прибережних вод, і останніми роками, ймовірно, кількість органічної речовини, що легко окислюється, також збільшилася. Вище лізокнина океанічні води пересичені по відношенню до, рівень лізокнина в Атлантичному океані розташований на глибині 4000 м, а в Тихому - всього лише на глибині 1000 м. Над лізокнином не відбувається ніякого помітного розчинення, тоді як на великих глибинах його розчинення приводить до зменшення випадання в осад, а нижче за глибину карбонатної компенсації осадження не відбувається зовсім. Оскільки товщина верхнього осадового шару, в якому відбувається перемішування опадів організмами, що живуть на дні океану (біотурбація), складає приблизно 10 см,  Вміст ізотопу  в океанічних осіданнях досить швидко зменшується з глибиною, що дає можливість визначити швидкість осадонакопичення (вона значно змінювалася з часу останнього заледеніння). Проте повний вміст  в осіданнях малий в порівнянні з його вмістом в атмосфері, біосфері і океанах.

 

5.5 Процеси перенесення в океанах

 

Унаслідок буферних властивостей карбонатної системи, зміна концентрації  розчиненого сумарного неорганічного вуглецю в морській воді, необхідне для досягнення стану рівноваги з зростаючою концентрацією атмосферного вуглекислого газу, мало, і рівноважний стан між атмосферним і розчиненим в поверхневих водах  встановлюється швидко. Роль океану в глобальному вуглецевому циклі визначається головним чином швидкістю обміну вод в океані.

Поверхневі шари океану досить добре перемішані аж до верхньої межі термокліна, тобто до глибини близько 75 м в області широт приблизно 45с. - 45ю. В більш високих широтах зимове охолоджування вод приводить до перемішування до значно великих глибин, а в обмежених областях і протягом коротких інтервалів часу перемішування вод розповсюджується до дна океанів (як, наприклад, в Гренландському морі і морі Уедделла). Крім того, з областей основних течій в широтному поясі 45-55 (Гольфстрім в Північній Атлантиці, Куросіо в північній частині Тихого океану і Антарктична течія) відбувається великомасштабне перенесення холодних поверхневих вод в область головного термокліна (глибина 100-1000 м). В шарі термокліна відбувається також вертикальне перемішування. Обидва процеси грають важливу роль при перенесенні вуглецю в океані.

Між вуглекислим газом в атмосфері і розчиненим неорганічним вуглецем в поверхневих шарах морської води рівновага встановлюється приблизно протягом року (якщо нехтувати сезонними змінами). Розчинений неорганічний вуглець переноситься разом з водними масами з поверхневих вод в глибинні шари океану. При русі водної маси його вміст звичайно зростає за рахунок надходження вуглекислого газу при розкладанні і розчиненні детриту, що опускається з поверхневого шару океану. Виникаюче в результаті збільшення вмісту сумарного розчиненого неорганічного вуглецю можна обчислити, беручи до уваги супутнє зростання вмісту поживних речовин і лужності. Проте, у такий спосіб не можна достатньо точно визначити значення концентрації  для часу, коли відбувалося утворення глибинних вод. Як було відзначено раніше, стаціонарний розподіл в океанах забезпечує зразковий баланс між перенесенням, направленим в глибину (потік детриту), і перенесенням, направленим до поверхні (перемішування і апвелінг з глибоких шарів з великими концентраціями ). При поглинанні антропогенного океаном потік розчиненого неорганічного вуглецю з глибинних шарів до поверхневих зменшується через підвищення концентрації в поверхневих  Автори статті, використаної як основа для написання даної роботи, проаналізували деякі з цих можливих чинників і показали, що за певних умов в поверхневих шарах океану можуть спостерігатися більш низькі значення концентрацій розчиненого неорганічного вуглецю в порівнянні з сучасними, відповідно концентрації атмосферного  будуть також іншими. Цю вуглецевого циклу в океані можна відзначити як можливий механізм збільшення направленого вниз потоку вуглецю у випадку, якщо б потепління у високих широтах викликало зменшення площі морського крижаного покриву. Це механізм негативного зворотного зв’язку між вуглецевим циклом і кліматичною системою, тобто підвищення температури в атмосфері повинне привести до збільшення поглинання  океаном і зменшенню швидкості росту  в атмосфері.

При оцінках можливих значень концентрацій атмосферного  в майбутньому звичайно рахують, що загальна циркуляція океанів не буде змінюється. Проте безперечно, що у минулому вона мінялася. Якщо потепління, викликане зростанням концентрації  в атмосфері, буде значним, то, ймовірно, відбудеться якась зміна циркуляції океану. Зокрема, може зменшитися інтенсивність утворення холодних глибинних вод, що у свою чергу може привести до зменшення поглинання антропогенного  океаном.

Зміна кругообігу вуглецю могла б відбутися також при збільшенні сумарної кількості поживних речовин в океані. Якщо наявність поживних речовин в поверхневих шарах як і раніше буде основним чинником, лімітуючим фотосинтез, їх концентрації в цих шарах повинні бути дуже низькими. Отже, повинен збільшиться вертикальний градієнт концентрації поживних речовин між збідненими цими речовинами поверхневими водами і глибинними шарами. В цьому випадку за рахунок вертикального перемішування в океані в поверхневі шари переноситиметься більше поживних речовин, що приведе до зростання інтенсивності фотосинтезу, і, отже, збільшенню потоку детриту в глибинні шари океану. Вертикальний градієнт концентрації  також зросте, а поверхневі значення  і парціальний тиск  при цьому зменшаться.

Брокер проаналізував можливі механізми, які могли б грати істотну роль при переході від льодового періоду до міжльодового, особливо підкресливши роль фосфатів. Дія цих механізмів могла б пояснити досить низькі концентрації вуглекислого газу в атмосфері, які мали місце в кінці льодовикової епохи, і високі концентрації  в атмосфері в більш теплий період часу. Показано, що складні вторинні механізми можуть вносити свій внесок в можливі зміни концентрації атмосферного  протягом найближчі 100 років, крім безпосередньої дії антропогенних викидів .

Як вуглець, так і фосфор поступають в океан з річковим стоком. Потік вуглецю складає біля г С/год але може збільшиться через інтенсифікацію сільськогосподарської діяльності і лісокористування. Оскільки цикли вуглецю і фосфору взаємозв’язані, корисно оцінити зростання споживання фосфору як добрива в сільському господарстві і промисловості. Річне добування фосфору в 1972 році складало  р. І надалі значно зросло. У водні системи (озера, річки, морити) поступає не більш 50% фосфору, а можливо, і значно менше, оскільки частина фосфору, використаного як добрива на полях і в лісах, залишається в грунтах.

Для грубої оцінки можливого зростання первинної продуктивності у водних системах можна вважати, що в процесі фотосинтезу використовується 20-50 % наявної кількості фосфатів і що освічена таким чином органічна речовина стає частиною вуглецевого циклу в океані або залишається у відкладеннях. Така зміна продуктивності приведе до видалення з атмосфери і поверхневих шарів водних систем  р. С/рік. Ця кількість відповідає 2-6 % річного викиду вуглецю в атмосферу за рахунок спалювання викопного палива в 1972 році, тому даний процес не можна не враховувати при побудові моделей зміни глобального клімату.



Информация о работе «Джерела і сток СО2»
Раздел: Экология
Количество знаков с пробелами: 40861
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
129844
8
5

... і токсичних промислових відходів та небезпечних речовин;  розвиток науково-дослідних робіт з екологічної тематики;  удосконалення еколого-пропагандистської діяльності. Крім того піднесенню ефективності управління природоохоронною справою на державному та регіональному рівнях у найближчій перспективі сприятиме:  запровадження екологічного аудиту;  запровадження ...

Скачать
37359
0
0

... ії нітритів, амонійного азоту, фенолів, нафтопродуктів, пестицидів (ГХЦГ) здебільшого перевищує ГДК для водойм господорсько-питного водокористування. Особливо високий вміст NO2~ у воді всіх водосховищ Дніпровського каскаду. Його концентрації перевищують ГДК у 5-25 разів. Не менш небезпечними є забруднення води фенолами та органічними речовинами, вміст яких вищий за ГДК відповідно у 2-25 та 2-6 раз ...

Скачать
112575
9
3

... рунтових вод, а також вод наземних водоймищ із впливом на екотоксикологічний стан водних екосистем. Характер впливу мінеральних добрив на агроекосистеми, передусім, зумовлений їхнім хімічним складом, що, у свою чергу, залежить від особливостей сировини та промислових технологій виробництва. Мінеральні добрива є джерелом надходження багатьох хімічних елементів (ХЕ) та сполук у довкілля. При їхній ...

Скачать
62289
16
4

... найбільш продуктивних водойм. При такій реакції води внесення штучних добрив у ставки дає найбільший ефект. Слаболужна реакція особливо сприяє розкладенню гумусових речовин. Розділ 3. Аналіз динаміки гідрохімічних показників р. Стрижень за 2006 – 2008 роки Нагальною на сьогоднішній день залишається проблема очистки стічних вод, особливо підприємств комунальної сфери у зв’язку зі зношеністю та ...

0 комментариев


Наверх