3. Использование нейронных сетей
Нейронные сети могут решать широкий круг задач обработки и анализа данных − распознавание и классификация образов, прогнозирование, управление и т.д. Конкурентами являются классические методы анализа данных: методы статистики, идентификации систем и управления − частично это обрисовано при обсуждении преимуществ нейронных сетей.
3.1 Требования к компетенции пользователя
Под пользователем здесь понимается человек, непосредственно разрабатывающий нейросетевые модели, а не конечный пользователь готового нейросетевого "решателя". Несмотря на многочисленные заявления о том, что нейронные сети доступны пользователям-неспециалистам, реальное положение вещей на самом деле иное. Во-первых, правильную формулировку задачи никакой компьютер за пользователя не сделает, причем под "правильной формулировкой" понимается не только правильность смысловой постановки задачи, но и правильный выбор математического метода решения и его настроек − а это в случае нейронных сетей подразумевает выбор адекватной структуры нейросети, алгоритма обучения, критерия качества решения задачи и и т.д. Конечно, значительная гибкость и универсальность нейроалгоритмов допускает применение по принципу забивания гвоздей микроскопом, но не всегда это приводит к хорошему результату. Во-вторых, имеющиеся автоматические схемы подбора оптимальных настроек нейрометодов не могут найти правильные решения для более-менее сложных задач. Например, соответствующие процедуры в Statistica Neural Networks не умеют хорошо работать с временными рядами, поскольку не используют приведения ряда к стационарному виду. Так что для пользователей-неспециалистов хороших широкопрофильных автоматических инструментов нет. А если делать вручную, то для получения хороших результатов (я остаюсь пока в рамках примера с временными рядами) придется осваивать как теорию статистического прогнозирования временных рядов и соответствующий модуль пакета Statistica (или альтернативную статпрограмму), так и нейросетевые методы и программы. И для иных классов задач грамотное применение нейросетей требует хороших знаний как методов нейроинформатики, так и других методов обработки и анализа данных (статистики, например).
3.2 Области применения нейронных сетей
Наверно, в каждой предметной области при ближайшем рассмотрении можно найти постановки нейросетевых задач. Вот список отдельных областей, где решение такого рода задач имеет практическое значение уже сейчас.
Экономика и бизнес: предсказание рынков, автоматический трейдинг, оценка рисков невозврата кредитов, предсказание банкротств, оценка стоимости недвижимости, выявление пере- и недооцененных компаний, автоматическое рейтингование, оптимизация товарных и денежных потоков, автоматическое считывание и распознавание чеков и документов, безопасность транзакций по пластиковым картам.
Медицина: постановка диагноза, обработка медицинских изображений, мониторинг состояния пациента, факторный анализ эффективности лечения, очистка показаний приборов от шумов.
Авионика: обучаемые автопилоты, распознавание сигналов радаров, адаптивное пилотирование сильно поврежденного самолета, беспилотные летательные аппараты.
Связь: сжатие видеоинформации, быстрое кодирование-декодирование, оптимизация сотовых сетей и схем маршрутизации пакетов.
Интернет: ассоциативный поиск информации, электронные секретари и агенты пользователя в Сети, фильтрация информации, блокировка спама, автоматическая рубрикация новостевых лент, адресные реклама и маркетинг для электронной торговли.
Автоматизация производства: оптимизация режимов производственного процесса, контроль качества продукции, мониторинг и визуализация многомерной диспетчерской информации, предупреждение аварийных ситуаций, робототехника.
Политологические и социологические технологии: предсказание результатов выборов, анализ социологических опросов, предсказание динамики рейтингов, выявление значимых факторов, объективная кластеризация электората, исследование и визуализация социальной динамики населения.
Безопасность и охранные системы: идентификация личности по отпечаткам пальцев, голосу, подписи, лицу, распознавание голоса, лиц в толпе, распознавание автомобильных номеров, анализ аэрокосмических снимков, мониторинг информационных потоков в компьютерной сети и обнаружение вторжений, обнаружение подделок.
Ввод и обработка информации: распознавание и обработка рукописных чеков, платежных, иных финансовых и бухгалтерских документов.
Геологоразведка: анализ сейсмических данных, ассоциативные методики поиска полезных ископаемых, оценка ресурсов месторождений.
Обилие приведенных выше применений нейронных сетей - не рекламный трюк. Просто нейросети - это новый, гибкий и мощный инструмент решения разнообразных задач обработки и анализа данных. [3]
Заключение
Развитие нейронных сетей вызвало немало энтузиазма и критики. Некоторые сравнительные исследования оказались оптимистичными, другие - пессимистичными. Для многих задач, таких как распознавание образов, пока не создано доминирующих подходов. Нужно пытаться понять возможности, предпосылки и область применения различных подходов и максимально использовать их дополнительные преимущества для дальнейшего развития интеллектуальных систем.
Множество надежд в отношении нейронных сетей сегодня связывают именно с аппаратными реализациями, но пока время их массового выхода на рынок, видимо, еще не пришло. Они или выпускаются в составе специализированных устройств, или достаточно дороги, а зачастую и то и другое. На их разработку тратится значительное время, за которое программные реализации на самых последних компьютерах оказываются лишь на порядок менее производительными, что делает использование нейропроцессоров нерентабельным. Но все это только вопрос времени — нейронным сетям предстоит пройти тот же путь, по которому еще совсем недавно развивались компьютеры, увеличивая свои возможности и производительность, захватывая новые сферы применения по мере возникновения новых задач и развития технической основы для их разработки.
Сегодня нейронные сети используются для работы в относительно узких областях, и неизвестно, доверят ли им когда-нибудь решение вопросов, которые требуют понимания социального контекста. Между тем нейронные сети уверенно продолжают проникать в нашу жизнь, и примеров тому немало.
Список использованной литературы
1) www.fos.ru./pedagog/9363.html
2) www.nekata.ru/index.php?show_section=155
3) www.neuropro.ru/neu4.shtml
... экспертных систем (А. Батуро), а также лекции проф. А.Н. Горбаня по нейронным сетям. Приложение 1. Плакаты для защиты диплома. ТЕХНОЛОГИЯ ИЗВЛЕЧЕНИЯ ЗНАНИЙ ИЗ НЕЙРОННЫХ СЕТЕЙ: ¨ АПРОБАЦИЯ, ¨ ПРОЕКТИРОВАНИЕ ПО, ¨ ИСПОЛЬЗОВАНИЕ В ПСИХОЛИНГВИСТИКЕ ЦЕЛЬ РАБОТЫ ¨ апробация гибкой технологии извлечения ...
... одном из элективных курсов. Выбор естественно-математического профиля, во-первых, определяется целью введения данного курса в школе (расширение научного мировоззрения) и, во-вторых, сложностью темы в математическом аспекте. Глава 2. Содержание обучения технологии нейронных сетей Авторы данной работы предлагают следующее содержание обучения технологии нейронных сетей. Содержание образования ...
... сети, позволяющая реализовать автоматическое изменение числа нейронов в зависимости от потребностей задачи, позволяет не только исследовать, но и контролировать процесс воспитания психологической интуиции искусственных нейронных сетей. - Впервые применена выборочная константа Липшица для оценки необходимой для решения конкретной задачи структуры нейронной сети. Практическая значимость ...
... . Если же задача не может быть сведена ни к одному из известных классов, разработчику приходится решать задачу синтеза новой конфигурации. Проблема синтеза искусственной нейронной сети сильно зависит от задачи, дать общие подробные рекомендации затруднительно. В большинстве случаев оптимальный вариант искусственной нейронной сети получается опытным путем. Искусственные нейронные сети могут быть ...
0 комментариев