Министерство образования Российской Федерации
Омский Государственный Университет
Математический факультет
Горбань Павел Александрович
ТЕХНОЛОГИЯ ИЗВЛЕЧЕНИЯ ЗНАНИЙ ИЗ НЕЙРОННЫХ СЕТЕЙ:
АПРОБАЦИЯ, ПРОЕКТИРОВАНИЕ ПО,
ИСПОЛЬЗОВАНИЕ В ПСИХОЛИНГВИСТИКЕ
Дипломная работа
Научный руководитель:
Член-корреспондент РАН
В.В. Шайдуров
Омск – 2002
Оглавление
Введение.. 4
Цель работы.. 4
Основные задачи исследования. 4
Основные результаты работы, полученные лично автором.. 4
Апробация работы.. 5
Публикации. 5
Глава 1. Проблема извлечения знаний и обзор методов извлечения знаний 6
1.1 Знание и приобретение знаний. 6
1.1.1 "Знание". 6
1.1.2. Приобретение знаний. 8
1.2. Методы извлечения и приобретения знаний. 8
1.2.1. Приобретение знаний, обучение и обобщение по примерам в теории классических экспертных систем. 9
1.2.1.1. Трудности при разработке экспертных систем. 11
1.2.2. Методы извлечения знаний из таблиц данных. 12
1.2.2.1. Технология извлечения знаний из таблиц данных. 12
1.2.2.2. Таблица эмпирических данных. 13
1.2.2.3. Статистические методы извлечения знаний из таблицы данных. 15
1.2.3. Методы идентификации систем. 15
1.2.4. Другие методы обработки данных. 16
1.3. Требования к технологии извлечения знаний. 17
Глава 2. Нейронные сети.. 19
2.1. Коннекционизм.. 19
2.2. Элементы нейронных сетей. 20
2.3. Основные архитектуры нейронных сетей. 21
2.4. Обучение нейронных сетей как минимизация функции ошибки. 22
Глава 3. Упрощение нейронной сети. 27
3.1. Что такое упрощение нейронной сети и зачем оно нужно. 27
3.2. Задача извлечения знаний из нейронной сети. 28
3.3. Методы упрощения нейронных сетей. 29
3.3.1. Контрастирование синапсов нейросети. 30
3.3.2. Контрастирование нейронов нейросети. 32
3.3.3. Контрастирование входных сигналов нейросети. 35
3.3.4. Бинаризация синапсов. 36
3.3.5. Упрощение нелинейных преобразователей нейронов. 37
3.3.6. Дополнительные модификации алгоритмов контрастирования. 37
3.3.7. Методы модификации структуры обученной сети. 38
3.4. Требования к процессу упрощения сети для извлечения знаний. 38
3.5. Упрощающие операции над нейронной сетью.. 39
3.6. Процедура комплексного упрощения нейронной сети. 40
Глава 4. Методы извлечения знаний из искусственных нейронных сетей 41
4.1. Существующие методы извлечения знаний из обученной нейросети 41
4.1.1. Методы на основе квантования сигналов сети. 42
4.1.2. Методы извлечения знаний параллельно с обучением нейросети. 44
4.1.3. Методы извлечения знаний из обученной нейросети. 46
4.2. Методы извлечения знаний: требования к методам.. 50
4.3. Методология извлечения явных знаний, использующая технологию комплексного упрощения нейросети. 52
4.4. Приемы повышения вербализуемости нейронной сети. 56
4.4.1. Добавление синдрома в набор входных симптомов. 56
4.4.2. Построение иерархии продукционных правил. 57
4.4.3. Ручное конструирование сети из фрагментов нескольких логически прозрачных сетей. 59
Глава 5. Нейросетевой анализ структуры индивидуального пространства смыслов.. 60
5.1. Семантический дифференциал. 60
5.2. MAN-многообразия. 63
Литература.. 65
Публикации автора по теме диплома.. 69
Приложение 1. Плакаты для защиты диплома. 71
Приложение 2. Статья: Горбань П.А. Нейросетевой анализ структуры индивидуального пространства смыслов. "Нейрокомпьютеры": разработка, применение. 2002, No 4. С. 14-19. 84
Введение
Цель работыЦелью дипломной работы является апробация гибкой технологии извлечения знаний из нейронных сетей, настраиваемой с учетом предпочтений пользователя. Тестирование, пробная эксплуатация и разработка новой версии программных средств, реализующих данную технологию. Проведение исследований индивидуальных пространств смыслов на основе данной технологии.
Основные задачи исследования1. Анализ разработанных методов извлечения явных знаний из нейронных сетей с указанием их ограничений и областей применимости.
2. Апробация гибкой настраиваемой на основе предпочтений пользователя технологии извлечения знаний, опирающейся на предварительное проведение комплексного упрощения нейронной сети, выполняющегося с учетом сформированных пользователем требований к результирующему виду извлекаемых знаний.
3. Тестирование, пробная эксплуатация и разработка новой версии программных средств, реализующих данную технологию.
4. Усовершенствование метода семантического дифференциала Осгуда при помощи технологии разреживания обучаемых нейронных сетей.
Основные результаты работы, полученные лично автором1. Предложены следующие приемы, упрощающие и делающие более гибким процесс вербализации (семантического анализа – осмысления в терминах проблемной области) извлеченного из сети набора правил:
a) На основе гипотезы о неединственности извлекаемых правил и учитывая, что разные фрагменты сети (поднаборы правил) будут более или менее правдоподобны и интерпретируемы, предложено конструирование новой, более понятной пользователю нейронной сети из наиболее просто интерпретируемых фрагментов других сетей, решающих ту же задачу.
b) Предложено добавление выходного сигнала некоторого фрагмента сети (содержательно интерпретируемого и правдоподобного с точки зрения пользователя) в качестве нового интегрального признака в число независимых признаков таблицы данных, и решение задачи извлечения знаний на основе полученного расширенного набора признаков.
0 комментариев