2.6 Сила давления жидкости на криволинейные цилиндрические поверхности
Сила давления жидкости на криволинейную цилиндрическую поверхность (рис.2.10) складывается из горизонтальной и вертикальной составляющих
. (2.17)
Рисунок 2.10 - Сила давления жидкости на криволинейную цилиндрическую поверхность |
Горизонтальная составляющая равна силе давления жидкости на вертикальную проекцию данной стенки
(2.18)
где - расстояние от свободной поверхности жидкости до центра тяжести ее вертикальной проекции; -площадь вертикальной проекции.
Вертикальная составляющая равна весу жидкости в объеме тела давления , т.е.
. (2.19)
Объем тела давления - объем, заключенный между данной стенкой, свободной поверхностью жидкости и вертикальными плоскостями, проходящими по контуру стенки.
3 Основы гидродинамики
3.1 Основные понятия о движении жидкости. Уравнение расхода (неразрывности)
Основной задачей гидродинамики является изучение законов движения жидкости.
Движение жидкости может быть установившимся и неустановившимся.
При установившемся движении жидкости скорость и давление во всех ее точках не изменяется с течением времени . При неустановившемся движении скорость и давление жидкости изменяются во времени.
При движении частиц жидкости различают линию тока, элементарную струйку, живое сечение.
Линией тока называется линия, касательная к каждой точке которой в данный момент времени совпадает с вектором скорости (рис.3.1).
Рисунок 3.1 – Линия тока | Рисунок 3.2 – Элементарная струйка |
Бесконечно малый объем, ограниченный линиями тока, называется элементарной струйкой. Предполагается, что поток движущейся жидкости состоит из отдельных элементарных струек.
Живое сечение потока - это поверхность в пределах потока жидкости , перпендикулярная в каждой своей точке к вектору соответствующей местной скорости в этой точке.
Расходом называется количество жидкости, протекающее через живое сечение в единицу времени. В гидравлике применяют объемный расход Q,:
(3.1)
где V-средняя скорость; S- площадь живого сечения.
При установившемся движении расход через все живые сечения потока одинаков:
. (3.2)
Выражение (3.2) называется уравнением расхода или уравнением неразрывности потока.
3.2 Уравнение Бернулли
Уравнение Бернулли является основным уравнением гидродинамики. Для двух сечений потока 1-1 и 2-2 реальной жидкости при установившемся движении уравнение Бернулли имеет вид
, (3.3)
где и - геометрический напор(удельная потенциальная энергия положения) в сечениях 1-1 и 2-2,м;
и - пьезометрический напор (удельная потенциальная энергия давления ) в сечениях, м;
– скоростной напор (удельная кинетическая энергия ) в сечениях, м;
,- избыточное давление в сечениях, Па;
,- средние по живому сечению трубы скорости потока в сечениях, ;
- коэффициенты кинетической энергии(коэффициенты Кориолиса) в сечениях;
- плотность жидкости, ;
-потери напора в трубе между сечениями, м.
Рисунок 3.3 – Графическая иллюстрация уравнения Бернулли |
Коэффициент кинетической энергии учитывает неравномерность поля скоростей в рассматриваемом живом сечении. Величина этого коэффициента зависит от режима течения жидкости: для ламинарного течения =2, для турбулентного =1,05-1,15().
Все члены уравнения Бернулли в формуле (3.3) имеют линейную размерность и в энергетическом смысле представляют удельную энергию жидкости, т.е. энергию, отнесенную к единице веса жидкости.
Сумма всех трех членов+=H представляет собой полный напор в сечениях.
Графическая иллюстрация уравнения Бернулли показана на рис.3.3. Линия показывает изменение полных напоров в сечениях 1-1 и 2-2 и называется напорной линией или линией полного напора, линия - изменение пьезометрических напоров и называется пьезометрической линией.
... два различных направления: "математическую механику жидкости" (см. область Б) и "техническую механику жидкости" (см. область В). Как отмечают (например, Г. Рауз и С. Инце в своей известной книге "История гидравлики"),' математическая механика жидкости зародилась еще в трудах Л. Эйлера (в середине XVIII в.). Что касается технической механики жидкости (гидравлики), то это направление механики, как ...
... . Для оценки режима течения жидкости вводят специальный критерий; число кавитации К f ' 7. Истечение жидкости из отверстий и насадков > 7.1. Отверстие в тонкой стенке Одной из типичных задач гидравлики, которую можно назвать задачей прикладного характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через насадки. ...
... собой цель детального и всестороннего описания жидких тел, что подробно рассматривается в классическом курсе физики, напомним лишь некоторые положения, которые могут пригодиться при изучении гидравлики как самостоятельной дисциплины. Так, согласно молекулярно-кинетической теории строения вещества все физические тела в природе (независимо от их размеров) находятся в постоянном взаимодействии между ...
... системы смешивания концентрата - калибровка проводимости - калибровка весов гемодиафильтрации - сброс записи в памяти об ошибках - инициализация памяти NO VRAM. Перспективы развития аппарата «искусственная почка». Дальнейшее развитие аппарата «искусственная почка» связано с внедрением новых методов лечения больных. Одним из таких методов является одноигольный режим диализа (SINGLE ...
0 комментариев