5.3 Область применения и рабочие жидкости гидропривода

Гидравлические приводы нашли широкое применение для осуществления движения рабочих органов различных машин. В машиностроении гидравлические приводы применяют в системах автоматического управления металлорежущих станков и автоматических линий, роботов-манипуляторов, прессов, технологических машин в металлургической, пищевой, химической, легкой и других отраслях промышленности.

Кроме этого, объемный гидропривод используют в сельскохозяйственных, строительных, транспортных машинах, угольных комбайнах, буровых установках, самолетах, военной технике и др.

Широкое использование гидропривода обусловлено его существенными преимуществами, к которым можно отнести безступенчатое регулирование скорости вращения или перемещения рабочего органа машины, возможность дистанционного регулирования, реверс исполнительного органа, надежность работы и др.

К основным недостаткам объемного гидропривода следует отнести утечки и нагрев жидкости, необходимость применения специальных устройств для поддержания постоянной температуры рабочей среды, более низкий к.п.д., чем у механических передач.

Рабочая жидкость в гидроприводе является одновременно носителем энергии и смазкой. При этом она подвергается воздействию высоких давлений, скоростей и температур. Кроме этого, жидкость должна быть нейтральной к материалам, быть пожаробезопасной и нетоксичной. В значительной степени этим требованиям удовлетворяют минеральные масла и синтетические жидкости на кремнийорганической основе. В настоящее время в качестве рабочих жидкостей объемных гидроприводов, используемых в общем машиностроении, применяются минеральные масла: индустриальные ; турбинное; веретенное; АМГ – 10 и др.

Тип рабочей жидкости, применяемой в гидроприводе, определяется условиями его эксплуатации.


6 Насосы объемного гидропривода

 

6.1 Общая характеристика насосов и их классификация

Насосы – это гидравлические машины, в которых происходит преобразование механической энергии привода в гидравлическую энергию перекачиваемой жидкости.

Насосы подразделяются на два основных класса: динамические и объемные (рис.6.1).

Рисунок 6.1 – Классификация насосов

К динамическим насосам относятся центробежные, осевые, вихревые и др. Рабочим органом этих насосов, как правило, является вращающееся рабочее колесо (рис.6.2).

Рисунок 6.2 – Схема центробежного насоса:

1 – подвод; 2 – р.к; 3 – отвод; 4 – диффузор

Энергия от рабочего колеса передается жидкости путем динамического взаимодействия лопастей колеса с обтекающей их жидкостью.

В объемных насосах рабочий процесс основан на попеременном заполнении рабочей камеры жидкостью и вытеснении ее при помощи вытеснителя. Вытеснителями могут быть поршни, плунжеры, шестерни, винты, пластины и т.п.

Остановимся более подробно на характеристике объемных насосов, которые применяются в объемном гидроприводе. По характеру процесса вытеснения жидкости объемные насосы разделяются на поршневые и роторные.

В поршневом насосе жидкость вытесняется из неподвижных камер в результате возвратно-поступательного движения поршней.

В роторном насосе жидкость вытесняется из перемещаемых рабочих камер в результате вращательного или вращательно-поступательного движения вытеснителей (поршней, винтов, пластин).

К общим свойствам объемных насосов, которые отличают их от динамических (лопастных), относятся цикличность рабочего процесса, самовсасывание, малая зависимость подачи насоса от развиваемого ими давления.

6.2 Основные параметры объемных насосов

Для характеристики насосов объемного гидропривода используют следующие параметры:

1 Рабочий объем - разность наибольшего и наименьшего значений объема рабочей камеры за один оборот вала или за двойной ход рабочего органа насоса.

2 Подача насоса  - объем жидкости, подаваемой насосом за единицу времени.

3 Давление насоса - разность между давлением  на выходе из насоса и давлением  на входе в него

. (6.1)

4 Мощность N ,кВт, потребляемая вращательным насосом (подводимая от двигателя):

, (6.2)

где M – крутящий момент на валу насоса;

 - частота вращения вала.

5          Полезная мощность насоса  - мощность, сообщаемая насосом перекачиваемой жидкости:

. (6.3)

6 К.п.д. насоса - отношение полезной мощности к мощности насоса

. (6.4)


Информация о работе «Гидравлика»
Раздел: Промышленность, производство
Количество знаков с пробелами: 43343
Количество таблиц: 28
Количество изображений: 25

Похожие работы

Скачать
23348
0
1

... два различных направления: "математическую механику жидкости" (см. область Б) и "техническую механику жидкости" (см. область В). Как отмечают (например, Г. Рауз и С. Инце в своей известной книге "История гидравлики"),' математическая механика жидкости зародилась еще в трудах Л. Эйлера (в середине XVIII в.). Что касается технической механики жидкости (гидравлики), то это направление механики, как ...

Скачать
191065
4
84

... . Для оценки режима течения жидкости вво­дят специальный критерий; число кавитации К f ' 7. Истечение жидкости из отверстий и насадков > 7.1. Отверстие в тонкой стенке Одной из типичных задач гидравлики, которую можно назвать задачей прикладного характера, является изучение процессов, связанных с истечением жидкости из отверстия в тонкой стенке и через насадки. ...

Скачать
28024
0
0

... собой цель детального и всестороннего описания жидких тел, что подробно рассматривается в классическом курсе физики, напомним лишь некоторые положения, которые могут пригодиться при изучении гидравлики как самостоятельной дисциплины. Так, согласно молекулярно-кинетической теории строения вещества все физические тела в природе (независимо от их размеров) находятся в постоянном взаимодействии между ...

Скачать
24958
0
3

... системы смешивания концентрата -  калибровка проводимости -  калибровка весов гемодиафильтрации -  сброс записи в памяти об ошибках -  инициализация памяти NO VRAM. Перспективы развития аппарата «искусственная почка». Дальнейшее развитие аппарата «искусственная почка» связано с внедрением новых методов лечения больных. Одним из таких методов является одноигольный режим диализа (SINGLE ...

0 комментариев


Наверх