1.2 ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ПРОДУКТАМ ИЗМЕЛЬЧЕНИЯ
Для обеспечения требований, предъявляемых к красочным суспензиям, величина наиболее крупных частиц пигментов и наполнителей, применяемых для их получения, не должна превышать 10-15 мк. С уменьшением размера частиц до известного предела повышается кроющая способность и интенсивность пигментов. Вместе с тем уменьшение размеров частиц пигментов и наполнителей повышает их маслоемкость и реакционоспособность, что может привести к понижению атмосферостойкости красочной пленки. Оптимальные размеры частиц для большинства пигментов и наполнителей находятся в пределах 0,2-1 мк.
В густотертых красках, при хранении которых исключается расслоение суспензии, допустимо заметное содержание зерен класса 10-15 мк. Следовательно, пигменты и наполнители высокого качества должны состоять из первичных или слабо агрегированных частиц размерами 0,2-1 мк, а содержание более крупных классов зерен должно быть сведено к минимуму.
Под первичными частицами понимаются монокристаллы или прочные кристаллические сростки, а под слабо агрегированными – зерна, легко распадающиеся на первичные частицы под пептизирующим влиянием воды и растворителей, а также при их диспергировании в пленкообразующих веществах.
Первичные частицы и зерна размерами более 10-20 мк, состоящие из прочных частиц, которые разрушаются только при измельчении, ухудшают качество красок и вызывают быстрый износ валковых и дисковых краскотерочных машин. Таким образом, от качества измельчения в большей мере зависят свойства красочной суспензии и покрытий, а также производительность машин для диспергирования пигментов в пленкообразующих веществах.
Приведенные выше требования, предъявляемые к дисперсности пигментов и наполнителей, легко выполнимы при синтезе многих осадочных пигментов и наполнителей, не подвергающихся в процессе получения прокаливанию, т.е. материалов второй группы. Остальные пигменты и наполнители в большинстве случаев необходимо подвергать тонкому и сверхтонкому измельчению или дезагрегации. Поэтому в производстве пигментов широко применяется тонкое и сверхтонкое измельчение.
При тонком измельчении материалов первой, третьей и четвертой групп практически невозможно получить монодисперсный или состоящий из зерен очень узкого класса продукт. Поэтому, не снимая требования о том, чтобы пигменты и наполнители состояли в основном из зерен крупностью < 1 мк, допускают содержание в них зерен больших размеров, жестко ограничивая наличие зерен размерами более 40-60 мк, значительно ускоряющих износ валковых машин.
Радикальным решением является сверхтонкое измельчение с помощью струйных мельниц, позволяющих получать продукт, содержащий более 95% зерен размерами менее 5-10 мк. Струйные мельницы для сверхтонкого сухого измельчения уже нашли широкое применение для сверхтонкого измельчения и дезагрегации пигментов, наполнителей и земель.
1.3 КЛАССИФИКАЦИЯ МЕТОДОВ И МАШИН ДЛЯ ИЗМЕЛЬЧЕНИЯ МАТЕРИАЛОВ
В зависимости от назначения и принципа действия машин, предназначенных для измельчения материалов, используются следующие методы разрушения: раздавливание (рис. 1, а), ударное воздействие (рис. 1, б), раскалывание (рис. 1, в), излом (рис. 1, г), истирание (рис. 1). При этом одновременно могут реализоваться несколько методов, например, раздавливание и истирание, удар и истирание и др. Необходимость в различных методах измельчения, а также в различных по принципу действия конструкциях и размерах машин для измельчения вызывается многообразием свойств и размеров измельчаемых материалов, а также различными требованиями к крупности готового продукта. Применяемые для измельчения машины разделяют на дробилки и мельницы.
Рис.1 Схема основных методов механического измельчения:
а – раздавливание; б – удар; в – раскалывание; г – излом; д – истирание.
Дробилки по принципу действия разделяют на щековые (рис. 2, а), в которых материал подвергается раздавливанию, раскалыванию и частично истиранию между двумя плитами-щеками при их периодическом сближении; конусные (рис. 2, б), в которых материал разрушается в процессе раздавливания, излома и частичного истирания между двумя коническими поверхностями, одна из которых движется эксцентрично по отношению к другой, осуществляя непрерывное дробление материала; валковые (рис. 2, в), в которых материал раздавливается между двумя валками, вращающимися навстречу один другому (иногда валки вращаются с разной частотой, и тогда раздавливание материала сочетается с истиранием); ударного действия, которые, в свою очередь, бывают молотковыми (рис. 2, г) и роторными (рис. 2, д); в молотковых дробилках материал измельчается в основном ударом шарнирно подвешенных молотков, а также истиранием, в роторных - дробление осуществляется за счет удара жестко прикрепленных к ротору бил, удара материала об отражательные плиты и ударов кусков материала один о другой.
Рис.2 Схемы принципов действия машин для дробления:
а - щековая дробилка; б - конусная; в - валковая ударного действия; г - молотковая дробилка; д - роторная для помола каменных материалов; мельницы: е - вращающиеся с мелющими телами; ж - вибрирующие с мелющими телами; з - истиранием частиц материала друг о друга; и - среднеходные роликовые; к - ударные; л – струйные.
Ряд измельчающих машин (бегуны и дезинтеграторы) можно отнести к дробилкам и к мельницам, так как их применяют для грубого помола и для мелкого дробления.
Мельницы по принципу действия разделяют на барабанные (рис. 2, е-з), в которых материал измельчается во вращающемся (рис. 2, е) или вибрирующем (рис. 2, ж) барабане с помощью загруженных в барабан мелющих тел или без них ударами и истиранием частиц материала один о другой и о футеровку барабана (рис. 2, з); среднеходные, в которых материал измельчается раздавливанием и частичным истиранием между каким-либо основанием и рабочей поверхностью шара, валка, ролика (в ролико-маятниковой мельнице (рис. 2, и) ролик прижимается центробежной силой к борту чаши и измельчает материал, попадающий между бортом и роликом); ударные (рис. 2, к), в которых материал измельчается ударом шарнирных или жестко закрепленных молотков (продукт, достигший определенной тонины помола, выносится из зоны действия молотков воздушным потоком); струйные (рис. 2, л), где материал измельчается в результате трения и соударения частиц материала одна о другую, а также о стенки камеры при движении частиц под действием воздушного потока, имеющего большую скорость.
Перечисленные способы измельчения относятся к методу механического измельчения под воздействием рабочего органа на материал или частиц материала одна на другую. Существуют методы измельчения материалов, основанные на других физических явлениях: с помощью электрогидравлического эффекта путем осуществления высоковольтного разряда в жидкости, ультразвуковых колебаний, быстроменяющихся высоких и низких температур, лучей лазера, энергии струи воды и др.
Машины для измельчения материалов должны иметь простую конструкцию, обеспечивающую удобство и безопасность обслуживания; минимальное число изнашивающихся легко заменяемых деталей; предохранительные устройства, которые при превышении допустимых нагрузок должны разрушаться (распорные плиты, срезные болты и др.) или деформироваться (пружины), предотвращая поломки более сложных узлов. Конструкция должна отвечать санитарно-гигиеническим нормам звукового давления, вибрации и запыленности воздуха.
... 50 МПа и более. Электрогидравлический способ разрушения заключается в периодически повторяемых высокоимпульсных разрядах между контактами электрической цепи в жидкости. 2. МАШИНЫ И ОБОРУДОВАНИЕ ДЛЯ ИЗМЕЛЬЧЕНИЯ КАМЕННЫХ МАТЕРИАЛОВ Измельчение является процессом последовательного уменьшения размеров кусков твердого материала от первоначальной крупности до требуемой. При производстве щебня в ...
... частиц при их деформации во время разрушения и на преодоление внешнего трения между материалом и рабочими частями машины. Теория процесса измельчения устанавливает зависимость между энергией, затраченной на измельчение твердого тела, и результатом измельчения, т. е. размером кусков ( зерен ) продукта измельчения. Теория измельчения основывается на двух гипотезах: объемной и поверхностной. ...
... материала, м (принимается равной размеру поступающих на сито кусков); s = 0,05...0,25 м/с — скорость движения материала вдоль желоба; Rp = 0,4...0,5 — коэффициент разрыхления материала. Машины для мойки каменных материалов Заполнители бетона промывают для удаления глинистых и органических примесей и пыли. Для этого используют различные способы. Если крупность заполнителя не превышает 70 мм, а ...
... . Другие типы двухстадиальных схем используются при тонком помоле руды или при необходимости избегания аккумуляции благородных металлов в цикле измельчения. Исходными данными для настоящего проекта будут служить относительно высокая производительность обогатительной фабрики - 5000000 тонн руды в год. Суточная производительность фабрики по исходному продукту составит: Qс = Q/n·η, ...
0 комментариев