Снятие характеристики передачи в статическом режиме

95058
знаков
15
таблиц
68
изображений

2. Снятие характеристики передачи в статическом режиме.

Построить характеристику передачи. Определить по ней коэффициент усиления тока базы . Характеристика передачи транзистора показана на рис.11.

Рис.10. Входная характеристика транзистора

Рис.11. Статическая характеристика передачи транзистора

3.       Снятие характеристики передачи в нагрузочном режиме.

Для этого в цепь коллектора включить резистор Rк согласно заданному варианту. Схема включения приведена на рис.12.

Построить характеристику Iк = B(Iб) при Rк = const. По ней найти токи насыщения базы и коллектора, а также коэффициент усиления тока. Определение этих величин по характеристике показано на рис.13.

Рис.13. Характеристика передачи в нагрузочном режиме

Коэффициент усиления по току . (15)

4.       Снятие выходных характеристик транзистора.

Выходные характеристики снимаются при изменяющемся токе коллектора. Для этого в цепь коллектора подается положительная полуволна напряжения, которая получается в результате однополупериодного выпрямления напряжения ~6,3 В. Схема включения приведена на рис.14.

По выходным характеристикам определить выходное сопротивление транзистора:

. (16)

Определение rd показано на рис.15.

Рис. 15. Выходные характеристики транзистора

5. Оформление отчета.

При оформлении отчета представить таблицы измерений, характеристики транзистора, определение параметров по характерситикам. Сделать выводы по каждому пункту.

Контрольные вопросы

1.                Что такое электронная и дырочная проводимости полупроводника?

2.                Чем отличаются транзисторы типа n-p-n и p-n-p?

3.                Показать подключение транзисторов типа n-p-n и p-n-p к источникам входной цепи?

4.                Изобразить характеристики передачи биполярного транзистора в статическом режиме и нагрузочном?

5.                Какой параметр транзистора определяется по характеристике передачи?

6.                Как выглядят выходные характеристики транзистора и какие параметры определяются по ним?

7.                Как влияет температура на выходные характеристики транзистора?

8.                Как смещается линия нагрузки на выходных характеристиках, если сопротивление нагрузки возрастает (уменьшается)?


Таблица вариантов

№ вар.

Eк, В

Rк, кОм

№ вар.

Eк, В

Rк, кОм

1                   6 1,5 13                6 1,3 (1,5//10)
2                   7 1,5 14                6 1,8 (2,2//10)
3                   8 1,8 (2,2//10) 15                8 2,2
4                   9 1,8 (2,2//10) 16                9 2,2
5                   10 2,2 17                10 2,48 (3,3//10)
6                   11 2,48 (3,3//10) 18                11 2,2
7                   6,5 1,5 19                6,5 1,3 (1,5//10)
8                   7,5 1,5 20                7,5 1,8 (2,2//10)
9                   8,5 1,8 (2,2//10) 21                8,5 2,2
10                9,5 2,2 22                9,5 2,48 (3,3//10)
11                10,5 2,2 23                10,5 2,48 (3,3//10)
12                11,5 2,48 (3,3//10) 24                11,5 2,7 (3,3//15)

Примечание: студенты, получившие подвариант А – строят нагрузочную прямую на выходных характеристиках транзистора; подвариант Б – строят характеристику передачи в статическом режиме; подвариант В – строят характеристику передачи в нагрузочном режиме.


Работа №10

Исследование интегрирующего усилителя

 

Цель работы

Изучение свойств интегрирующего усилителя на основе операционного усилителя.

Теоретическая часть

Схема усилителя приведена на рис.1.

Рис.1. Схема интегрирующего усилителя

В цепи обратной связи включены конденсатор С и резистор R7 = 470 кОм. Резистор R7 создает отрицательную обратную связь по постоянному току, что позволяет уменьшить дрейф нуля усилителя. Конденсатор С пропускает переменные составляющие сигнала и осуществляет операцию интегрирования.

Пусть частота сигнала 104 Гц, емкость конденсатора 3,3 нФ, тогда

. (1)

Получается относительно малое сопротивление xс по сравнению с R7, поэтому током i1 можно пренебречь.

Пусть операционный усилитель является идеальным усилителем напряжения, тогда ток iвхu = 0. Точка 2 является виртуальным нулем, поэтому i = ioc.

Значение токов определяется из соотношений:

, (2)

, (3)

, (4)

,

. (5)

На основании выражения (5) определяется временная функция выходного напряжения:

, (6)

где Uвых(0) – начальное напряжение на конденсаторе.

Пусть Uвых(0) = 0, а на вход подается скачек напряжения с амплитудой

Um. Тогда , (7)

где R4С = τ – постоянная времени интегрирования.

Работа интегрирующего усилителя для скачка входного напряжения приведена на рис.2.

Рис.2. Временные диаграммы работы интегрирующего усилителя для скачка входного напряжения

Если на вход усилителя подается прямоугольное знакопеременное напряжение, то на выходе получается пилообразное напряжение. Временные диаграммы, иллюстрирующие работу усилителя, приведены на рис.3.

Рис.3. Временные диаграммы интегрирующего усилителя для периодического прямоугольного сигнала

При построении рис.3 начальное напряжение Uвых(0) принято равным 0. Амплитудное значение выходного напряжения Uпm достигается за четверть периода Т прямоугольного сигнала или половину длительности импульса tu:

, , где f – частота входного сигнала.

Тогда значение амплитуды определяется выражением: (8)

При расчете и построении временных диаграмм напряжение Um принимается равным 3 В.

Экспериментальная часть

 

1. Балансировка усилителя.

Собрать схему согласно рис.1. При отсутствии входного сигнала добиться нулевого значения выходного напряжения. Напряжение на выходе контролировать при помощи осциллографа.

2. Работа генератора пилообразного напряжения.

Исследовать работу генератора пилообразного напряжения. Для этого в точку 14 схемы подать прямоугольное знакопеременное напряжение от генератора сигнала, используя у него выход «». Установить заданную частоту f и амплитуду входного напряжения Um. Зарисовать осциллограммы uвх(t) и uвых(t). Сравнить с расчетом по значениям Um, f, Uпm.

3. Снятие зависимости амплитуды выходного напряжения от частоты.

При изменении частоты прямоугольного входного сигнала контролировать изменение амплитуды Uпm = F(f). Результаты измерений занести в таблицу.

4. Оформление отчета.

По результатам опыта построить зависимость Uпm = F(f), определить Uпm для заданной частоты и обработать осциллограммы.

Контрольные вопросы

1.                Что означает понятие «Виртуальный ноль»?

2.                Как изменить постоянную времени интегрирования?

3.                Что произойдет с выходным напряжением интегрирующего усилителя, если смещается ноль усилителя?

4.                Как определить вид обратной связи в усилителе?

5.                Что произойдет в схеме, если изменяются R4, R7, R5, С?

6.                Как влияет частота входного сигнала на выходное напряжение схемы?

Таблица вариантов

№ вар. С, нФ f, кГц № вар. С, нФ f, кГц
1 1.0 40 13 6.8 5
2 1.5 30 14 3.3 20
3 2.2 35 15 2.2 25
4 3.3 10 16 10.0 10
5 6.8 8 17 6.8 13
6 10.0 4 18 3.3 19
7 6.8 6 19 2.2 28
8 3.3 15 20 1.0 62.5
9 2.2 30 21 1.5 55.5
10 1.5 25 22 2.2 40
11 1.0 50 23 3.3 25
12 10 3 24 10.0 8.0

Примечание: студенты, получившие подвариант А, строят временные диаграммы uвх(t), uвых(t); подвариант Б – изображают варианты схем интегрирующих усилителей; подвариант В – расчет выходного напряжения с учетом резистора R7.


Библиографический список

1.                 Горбачев Г.Н., Чаплыгин Е.Е. Промышленная электроника. – М.: Энергоатомиздат, 1988. – 320 с.

2.                 Забродин Ю.С. Промышленная электроника. – М.: Высшая школа, 1982. – 496 с.

3.                 Гусев В.Г., Гусев Ю.М. Электроника. – М.: Высшая школа, 1991. – 622 с.

4.                 Шило В.Л. Линейные интегральные схемы в радиоэлектронной аппаратуре. – М.: Сов. радио, 1979. – 368 с.


Информация о работе «Исследование полупроводниковых приборов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 95058
Количество таблиц: 15
Количество изображений: 68

Похожие работы

Скачать
153271
6
6

... от структуры силикатных стёкол, и способно выдерживать умеренные концентрации катионов (например, натрий до 0,1%), не увеличивая электропроводимость. Боратное стекло отвечает требованиям герметизации полупроводниковых приборов: свободно от щелочных металлов, уплотняется (спаивается) при температуре до 800С, относительно инертно и водонепроницаемо, имеет регулируемые коэффициенты температурного ...

Скачать
21910
0
1

... интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов. Тиристор – электропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. ...

Скачать
50268
3
3

... ). Перспективы развития микроэлектроники Функциональная микроэлектроника. Оптоэлектроника, акустоэлектроника, магнетоэлектроника, биоэлектроника и др. Содержание лекций 1 Цели и задачи курса “Электронные, квантовые приборы и микроэлектроника”. Физика полупроводников. p-n- переходы. Полупроводниковые диоды. Разновидности и характеристики. 2 Транзисторы. Принцип действия, разновидности и ...

Скачать
43308
1
12

... измениться в е раз из-за рекомбинации. Для диода с тонкой базой при низкой частоте постоянная времени равна (1.6) 2. РАСЧЕТ и исследование мощных низкочастотных диодов на основе кремния   2.1 Расчет параметров диода Проведем расчет и исследования статических и динамических характеристик 4H-SiC p+-п0-n+ диодов, рассчитанных на обратное напряжение 6, 10 и 20 кВ и ...

0 комментариев


Наверх