Міністерство освіти і науки України

Вінницький національний технічний університет

Інститут автоматики, електроніки та комп’ютерних систем управління

Кафедра МПА

ІНФОРМАЦІЙНО-ВИМІРЮВАЛЬНА СИСТЕМА ТИСКУ ГАЗУ В ГАЗОПРОВОДІ

Пояснювальна записка

з дисципліни “Інформаційно-вимірювальні системи”

до курсового проекту за спеціальністю 8.091302

“Метрологія та вимірювальна техніка”

08-03.КП.009.00.000 ПЗ

Вінниця ВНТУ 2008


Зміст

Вступ

1. Технічне обґрунтування варіанту реалізації системи

2. Розробка структурної схеми інформаційно-вимірювальної системи тиску газу в газопроводі

3. Розробка електричної принципової схеми інформаційно-вимірювальної системи тиску газу в газопроводі

4. Електричні розрахунки

5. Розрахунок похибки вимірювання

Висновки

Література


Вступ

Забезпеченість України паливно-енергетичними ресурсами одне з найголовніших завдань національної економіки, без розвитку якого неможливе успішне здійснення соціальних, економічних і науково-технічних програм. Газ набув дуже широкого використання в нашому житті, оскільки є не лише висококалорійним паливом, але і цінною сировиною для хімічної промисловості. Газ має великі переваги перед всіма іншими видами палива, як по калорійності, так і по ціні. Частка газу у використанні первинних енергоресурсів становить 45 %.

Споживачам газ доставляється по газорозподільним мережам – системах трубопроводів для транспортування газу по об’єктах. Газопроводи газорозподільних мереж бувають низького (до 0,005 МПа), середнього (від 0,005 до 0,3 МПа), високого (від 0,3 до 0,6 і від 0,6 до 1,2 МПа) тисків. Гідравлічні режими роботи газорозподільних мереж приймаються з умов забезпечення стійкої роботи газорегуляторних пунктів і устаткування, а також пальників комунальних і промислових споживачів при максимально допустимих перепадах тиску газу. Саме тому вимірювання тиску газу в трубопроводах є дуже важливим.

На даний час розроблено багато засобів вимірювання тиску газу. Актуальність ж розробки інформаційно-вимірювальної системи тиску газу полягає в необхідності підвищення точності, швидкодії та одночасному контролі декількох параметрів, а саме тиску, розрідження та перепаду тиску у газопроводі, а також вимірювання температури за допомогою однієї системи та представлення її оператору в зручному вигляді на одному відеотерміналі. Сполучення інформаційно-вимірювальної системи з комп’ютером дозволяє швидко отримувати, обробляти та зберігати для подальшого використання великі потоки інформації.

В роботі проведено огляд літературних джерел, розглянуто основні первинні пертворювачі тиску газу, обгрунтовано варіант реалізації системи, а на його основі – розробку структурної та принципової електричної схеми системи.


1. Технічне обґрунтування варіанту реалізації системи

Перед безпосередньою розробкою ІВС вимірювання тиску газу в газопроводі розглянемо три можливих варіанти реалізації цієї системи.

Структурна схема першого варіанту реалізації системи наведена на рисунку 1.1.

Рисунок 1.1 – Структурна схема першого варіанту реалізації системи

Принцип роботи наведеного варіанту полягає в наступному. Кожна з фізичних величин, які вимірюються, перетворюються у відповідному вимірювальному каналі за допомогою первинного та вторинного вимірювальних перетворювачів, після чого уніфікований сигнал поступає на вхід АЦП. АЦП працює в режимі freerun, здійснюючи безперервне перетворення вхідного аналогового сигналу в цифровий код. Код з виходу АЦП подається безпосередньо на порт мікроконтролера, при цьому кожен АЦП підключений до окремого порту, що дозволяє постійно контролювати значення всіх фізичних величин, що вимірюються. Мікроконтролер обробляє поступаючи інформацію, а результати обробки передаються через інтерфейс на персональний комп’ютер.

Структурна схема другого варіанту реалізації системи наведена на рисунку 1.2


Рисунок 1.2 – Структурна схема другого варіанту реалізації системи

Принцип роботи даного варіанту полягає в наступному. Фізична величина у відповідному вимірювальному каналі перетворюється в уніфікований сигнал за допомогою первинного та вторинного вимірювальних перетворювачів, після чого поступає на вхід АЦП. АЦП працює в режимі постійного перетворення. Кожен вимірювальний канал має свою адресу. Виходи всіх АЦП підключені до шини обміну даними. До шини також підключені мікроконтролер та інтерфейс для зв’язку з ПЕОМ. Якщо необхідно в певний момент часу провести вимірювання фізичної величини у будь-якому вимірювальному каналі, то процесор виставляє на шину адресу відповідного каналу. Після перетворення АЦП виставляє на шину цифровий код, який зчитується процесором.

Структурна схема третього варіанту реалізації системи наведена на рисунку 1.3.


Рисунок 1.3 – Структурна схема третього варіанту реалізації системи

Третій варіант реалізації працює наступним чином. Фізична величина, що вимірюється перетворюється в уніфікований сигнал за допомогою первинного та вторинного перетворювачів, після чого уніфікований сигнал поступає на вхід мультиплексора. Якщо необхідно виміряти певну фізичну величину, мікроконтролер подає на мультиплексор код відповідного вимірювального каналу. Далі сигнал з виходу мультиплексора поступає на вхід АЦП, який перетворює його на цифровий код і виставляє цей код на шину обміну даними. Цей код зчитується мікроконтролером, який також підключений до шини. Крім того до шини підключений інтерфейс, через який результати вимірювання передаються на ПЕОМ.

Для вибору кращого варіанту реалізації системи використаємо узагальнений якісний критерій порівняння, який полягає у визначенні загальної ефективності системи як відношення реального якісного критерію , який забезпечує заданий варіант реалізації системи, до потенційного якісного критерію , що відповідає ідеальній системі:

.(1.1)

В даному випадку чим ближче значення Е до 1, тим більше варіант реалізації системи відповідає ідеальному.

Порівняльний аналіз варіантів реалізації систем наведений в таблиці 1.1.

Таблиця 1.1 – Порівняльний аналіз варіантів реалізації ІВС

Параметр 1-й варіант реалізації системи 2-й варіант реалізації системи 3-й варіант реалізації системи Ідеальна система
Точність 1 1 1 1
Швидкодія 1 1 0 1

Використання ресурсів

CPU

0 1 0 1
Складність реалізації 1 1 1 1
Складність ПЗ 1 1 1 1
Собівартість 0 0 1 1

4 5 4 7

Отже, згідно таблиці 1.1 значення якісного критерію для першого варіанту реалізації системи

;

для другого варіанту

;

і для третього

.

Отже, другий варіант реалізації системи більше відповідає ідеальній системі при обраних характеристиках для порівняння, а оскільки ці характеристики необхідно забезпечити в системі, що розробляються, то для подальшої розробки виберемо саме другий варіант реалізації.



Информация о работе «Інформаційно-вимірювальна система тиску газу в газопроводі»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 34604
Количество таблиц: 1
Количество изображений: 13

Похожие работы

Скачать
264820
23
41

... стратегією розвитку ВАТ «Дніпропетровськгаз» є стратегія зниження мінімізації витрат, тобто зменшення собівартості реалізуємої продукції та послуг. Розділ 2. Обґрунтування заходів з підвищення економічної ефективності операційної діяльності ВАТ «Дніпропетровськгаз» 2.1 Техніко-економічне обґрунтування заходів В умовах державного регулювання цін реалізації газу єдиною стратегією розвитку ...

Скачать
148203
25
2

... і вирізаються, при цьому виконують виявлення і усунення причин браку. Якщо причиною браку виявляється низька кваліфікація зварника, то його звільняють від роботи. 5.3 Технологія будівництва поліетиленовими газопроводами з висвітленням технології зварювання поліетиленових труб в розтруб Для з'єднання труб І деталей з поліетилену низького тиску застосовують контактне теплове зварювання у стик ...

Скачать
199387
21
11

... , звитих в плоскі спіралі. Кінці спіралей приварені до трьох роздаючих і до трьох колекторних труб. 2. Призначення, склад, технічні характеристики системи автоматичного регулювання 2.1 Призначення системи автоматичного регулювання Система автоматичного регулювання (САР) турбіни виконується електрогідравлічною і структурно складається з електричної і гідравлічної частин, робота яких взає ...

Скачать
66366
1
0

... 7.6, 1.5, 2.5 Блок ручного управління  БРУ 42 3 Блок сигналізації положення БСПТ 7.9, 1.8, 2.8 Виконавчий механізм  МЕО-250 3 5. Опис найбільш складних схем автоматизації технологічного процесу   5.1 Схема контролю і регулювання співвідношення “газ-повітря” Контроль і регулювання співвідношення “газ - повітря” (додаток №1) складається з датчиків ...

0 комментариев


Наверх