4. Електричні розрахунки

Розрахуємо схему диференційного включення операційного підсилювача LM358, зображену на рисунку 3.7 для вимірювальних каналів різниці тисків та розрідження.

Вихідний струм  датчика протікатиме через резистор R1, а вихідна напруга падатиме на резисторі R1, оскільки потенціал на інверсному вході дорівнюватиме 0 в наслідок того, що він з’єднаний з землею через великий вхідний опір операційного підсилювача.


.(4.1)

Звідси з формули 3.2 можна отримати вираз для визначення опіру резистора R4

(4.2)

Для схеми диференційного включення операційного підсилювача R1=R2, а R3=R4.

Оскільки діапазон вхідних напруг АЦП від 0 до 10 В, а діапазон вихідних напруг датчика SLP від 0 до 50 мВ, то необхідно забезпечити коефіцієнт підсилення рівний

.

Для датчика SLP вихідний струм згідно [5] становить 10 мА, а максимальна напруга – 50 мВ, тоді для схеми, що використовується у вимірювальному каналі розрідження

Ом.

Тоді опір резистора R4

Ом.

Для датчика 26 PC SMT діапазон вихідних напруг від 0 до 150 мВ. Для підсилення сигналу датчика необхідно забезпечити коефіцієнт підсилення


.

Для датчика 26 PC SMT вихідний струм згідно [5] становить 10 мА, а максимальна напруга – 150 мВ, тоді для схеми, що використовується у вимірювальному каналі різниці тисків

Ом.

Тоді опір резистора R4

Ом.

Для датчика FP2000 діапазон вихідних напруг співпадає з діапазоном вхідних напруг АЦП, тому підсилювати сигнал датчика не потрібно. Необхідно забезпечити коефіцієнт підсилення

.

Для датчика FP2000 вихідний струм згідно [5] становить 10 мА, а максимальна напруга  – 10 В, тоді для схеми, що використовується у вимірювальному каналі надлишкового тиску

Ом.

Тоді опір резистора R4

Ом.


Розрахуємо резистор у схемі джерела живлення, зображеній на рисунку 3.8. Датчики живляться від напруги 10 В, трансформатор понижує напругу з 220 В до 15 В змінного струму, а на виході діодного моста маємо 15 В постійного струму. Для стабільної довготривалої роботи лінійного стабілізатора напруги МС7805 необхідно забезпечити якомога менше падіння напруги на ньому. Забезпечимо падіння напруги на мікросхемі на рівні 1 В, тоді на резисторі R падатиме напруга

.

Тоді опір резистора з врахуванням номінального значення струму в схемі 20 мА,

Ом.

У схемі діодного моста використаємо діоди 1N4148.

Для усунення високочастотних завад використаємо у схемі джерела живлення керамічні конденсатори K73-17-100B-0,1мкФ+10%.

Розрахуємо номінали резисорів у схемі підключення оптопари зображеної на рисунку 3.10.

Опір резисора R1 знайдемо за формулою

,(4.3)

де  = 5 В – напруга рівня логічної одиниці;

 = 1,5 В – падіння напруги на світлодіоді;

 = 10 мА –струм, що протікає через світлодіод.

Тоді

Ом.

Резистор R2 вибираємо 47 кОм, а резистор R3 – 1 кОм.

 

5. Розрахунок похибки вимірювання

Джерелами виникнення похибки вимірювання є датчики тиску і температури та аналого-цифровий перетворювач.

Похибка мікросхеми ТМР03 – це похибка шпаруватості, яка визначається за формулою:

(5.1)

де f – період імпульсу, мс;

 – тривалість імпульсу, мс.

Номінальна вихідна частота мікросхеми 35 Гц. Пристрій працює з фіксованою довжиною імпульсу Т1, яка складає 10 мс. Тоді

(мс),

.

СКВ квантування АЦП можна визначити за формулою

,(5.2)

де  – крок квантування, який в свою чергу визначається при відомому значенні опорної напруги АЦП за формулою

,(5.3)

де  – значення опорної напруги;

 – розрядність АЦП.

В даному випадку використовується 8 розрядів АЦП.

Отже, крок квантування АЦП

.

Тоді СКВ похибки квантування

.

Абсолютна похибка квантування АЦП визначається за формулою

.(5.4)

Знайдемо

(В).

Відносна похибка квантування АЦП визначається за формулою


.(5.5)

Отже,

.

Відносна похибка датчика FP2000 становить 0,1%, тоді сумарна відносна похибка ІВС тиску газу в газопроводі становитиме

.

Розрахована похибка менше 1%, що відповідає умові завдання.


Висновки

В процесі виконання курсового проекту було розроблено інформаційно-вимірювальну систему тиску газу в газопроводі, в якій по чотирьох каналах вимірюється надлищковий тиск, різниця тисків, розрідження, а також температура в газороводі, а отримана вимірювальна інформація після перетворення її аналого-цифровими перетворювачами в цифровий код поступає на мікроконтролер, який через інтерфейс RS-485 передає її на персональний комп’ютер. Ситема дозволяє одночасно контролювати декілька параметрів у газопроводі.

В першому розділі проекту проведено технічне обгрунтування варіанту реалізації системи, при якому із трьох розглянутих варіантів вибрано за допомогою узагальненого якісного критерію один, який найбільше відповідає ідеальній системі.

В другому розділі розглянуто основні типи первинних перетворювачів тиску та температури, розроблено структурну схему інформаційно-вимірювальної системи.

В третьому розділі описані датчики тиску, розрідження, різниці тисків і температури та основні мікросхеми, що входять до електричної принципової схеми ІВС, такі, як мікроконтролер, АЦП, драйвер інтерфейсу RS-485.

Четвертий розділ містить електричні розрахунки.

В п’ятому розділі розраховано відносну похибку ІВС. Розрахована похибка менше 1%, що відповідає умові завдання.


Література

1.      Поліщук Є.С., Дорожовець М.М., Яцук В.О. та ін. Метрологія та вимірювальна техніка: Підручник / Є.С.Поліщук, М.М.Дорожовець, В.О.Яцук, В.М.Ванько, Т.Г.Бойко; За ред. проф. Є.С.Поліщука. – Львів: Видавництво «Бескид Біт», 2003. – 544с.

2.      Энергетическое топливо (ископаемые угли, горючие сланцы, торф, мазут и горющий природный газ): Справочник / В.С.Вдовиченко, М.И.Мартынова, Н.В.Новицкий, Г.Д.Юшина. – М.: Энергоатомиздат, 1991. – 184с., ил.

3.      Боднер В.А., Алферов А.В. Измерительные приборы (теория, расчет, проектирование): Учебник для вузов: В 2-х т. Т. 2: Методы измерений, устройство и проектирование приборов. – М.: Изд-во стандартов, 1986. – 224 с., ил.

4.      Поліщук Е. С. Измерительные преобразователи: Учебн. пособие для вузов. - К.: Высш. шк., 1981. -296 с.

5.      А. Маргелов. Датчики давления компании Honeywell. // CHIP NEWS Украина, №8(101), 2005. – с.17-21.

6.      Кухарчук В.В., Кучерук В.Ю., Долгополов В.П., Грумінська Л.В. Метрологія та вимірювальна техніка. Навчальний посібник. – Вінниця: УНІВЕРСУМ-Вінниця, 2004. – 252с.


Информация о работе «Інформаційно-вимірювальна система тиску газу в газопроводі»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 34604
Количество таблиц: 1
Количество изображений: 13

Похожие работы

Скачать
264820
23
41

... стратегією розвитку ВАТ «Дніпропетровськгаз» є стратегія зниження мінімізації витрат, тобто зменшення собівартості реалізуємої продукції та послуг. Розділ 2. Обґрунтування заходів з підвищення економічної ефективності операційної діяльності ВАТ «Дніпропетровськгаз» 2.1 Техніко-економічне обґрунтування заходів В умовах державного регулювання цін реалізації газу єдиною стратегією розвитку ...

Скачать
148203
25
2

... і вирізаються, при цьому виконують виявлення і усунення причин браку. Якщо причиною браку виявляється низька кваліфікація зварника, то його звільняють від роботи. 5.3 Технологія будівництва поліетиленовими газопроводами з висвітленням технології зварювання поліетиленових труб в розтруб Для з'єднання труб І деталей з поліетилену низького тиску застосовують контактне теплове зварювання у стик ...

Скачать
199387
21
11

... , звитих в плоскі спіралі. Кінці спіралей приварені до трьох роздаючих і до трьох колекторних труб. 2. Призначення, склад, технічні характеристики системи автоматичного регулювання 2.1 Призначення системи автоматичного регулювання Система автоматичного регулювання (САР) турбіни виконується електрогідравлічною і структурно складається з електричної і гідравлічної частин, робота яких взає ...

Скачать
66366
1
0

... 7.6, 1.5, 2.5 Блок ручного управління  БРУ 42 3 Блок сигналізації положення БСПТ 7.9, 1.8, 2.8 Виконавчий механізм  МЕО-250 3 5. Опис найбільш складних схем автоматизації технологічного процесу   5.1 Схема контролю і регулювання співвідношення “газ-повітря” Контроль і регулювання співвідношення “газ - повітря” (додаток №1) складається з датчиків ...

0 комментариев


Наверх